Quantcast
Channel: New Drug Approvals
Viewing all 2878 articles
Browse latest View live

About Hepatitis

$
0
0

Originally posted on My Natural Cures:

Here are the most important information about hepatitis.

Five different hepatitis viruses have been identified: type A; type B; type C; type D, or delta virus; and type E. Type A is probably the most prevalent type of viral hepatitis worldwide, followed by types B, E, C, and D.

Hepatitis A and E are transmitted through fecally contaminated food or water. Other modes of transmission include needle sharing among intravenous drug abusers; sexual contact; maternal transmission; and transmission by blood transfusion.

A simple blood test is used to determine that a person has one or more of the different types of hepatitis.

Acute hepatitis is typically characterized by flu-like symptoms (including fever, headaches, fatigue, nausea and vomiting) and jaundice. Chronic hepatitis is often asymptomatic.

Vaccines are available to protect against hepatitis A and B. Additionally, immune globulin for hepatitis A or hepatitis B is recommended when someone has been exposed…

View original 61 more words


Filed under: Uncategorized

New e-book: Case Studies in Sample Storage

$
0
0

 

New e-book: Case Studies in Sample Storage

Learn how lab professionals solved their sample storage problems at leading research organizations. Case studies include adapting sample storage for changing demands in compound management and incorporating sample libraries from acquired companies.

DOWNLOAD E-BOOK

http://b2b-affiliate-networks.com/brooks/user-group-symposium-book/drug-development.php?utm_source=Drug%20Development%20%26%20Discovery&utm_medium=textad&utm_campaign=User%20Group%20Symposium%20Book&pos=2&adtype=boombox_ad&type=cta&adcategory=paid

 

 

 

 


Filed under: PROCESS Tagged: e-book: Case Studies, Sample Storage

Inovio Kicks Off Study of Cervical Cancer Immunotherapy INO 3112

$
0
0


Inovio Kicks Off Study of Cervical Cancer Immunotherapy

 

Inovio Pharmaceuticals Inc. announced it has initiated a Phase 1/2a clinical trial to evaluate safety, immunogenicity, clinical responses and disease-free survival of its DNA immunotherapy product, INO-3112, in treating human papillomavirus (HPV)-associated cervical cancer. Read more…

FULL STORYhttp://www.dddmag.com/news/2014/06/inovio-kicks-study-cervical-cancer-immunotherapy?et_cid=4010798&et_rid=523035093&type=cta

Inovio Pharmaceuticals Inc. announced it has initiated a Phase 1/2a clinical trial to evaluate safety, immunogenicity, clinical responses and disease-free survival of its DNA immunotherapy product, INO-3112, in treating human papillomavirus (HPV)-associated cervical cancer. INO-3112 is a combination of Inovio’s lead active immunotherapy product, VGX-3100, and its proprietary immune activator expressing interleukin-12 (IL-12). VGX-3100 is currently being evaluated in a randomized Phase 2 efficacy trial for the treatment of high grade cervical dysplasia (pre-cancer).


Filed under: cancer, Phase2 drugs Tagged: Cervical Cancer Immunotherapy, INO 3112, Inovio, phase 2

Total Synthesis and Biological Studies of TMC-205 and Analogues as Anticancer Agents and Activators of SV40 Promoter

$
0
0
Abstract Image
TMC 205
6-[3-Methyl-1(E),3-butadienyl]-1H-indole-3-carboxylic acid
C14 H13 N O2
227.2585
Mitsubishi Tanabe Pharma (Innovator) now in biological testing
TMC-205 is a natural fungal metabolite with antiproliferative activity against cancer cell lines. The light- and air-sensitivity prevented in-depth exploitation of this novel indole derivative. Herein, we report the first synthesis of TMC-205. On the basis of its reactivity with reactive oxygen species, we developed air-stable analogues of TMC-205. These analogues are 2–8-fold more cytotoxic than TMC-205 against HCT-116 colon cancer cell line. Importantly, at noncytotoxic dose levels, these analogues activated the transcription of luciferase reporter gene driven by simian virus 40 promoter (SV40). Further, these small molecules also inhibit firefly luciferase, presumably by direct interaction.
Total Synthesis and Biological Studies of TMC-205 and Analogues as Anticancer Agents and Activators of SV40 Promoter
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
ACS Med. Chem. Lett., Article ASAP
DOI: 10.1021/ml500025p

SYNTHESIS…………..http://pubs.acs.org/doi/suppl/10.1021/ml500025p/suppl_file/ml500025p_si_001.pdf

Synthesisof TMC-205 (1):MeOH (1.5 mL) and aqueous
NaOH (4 M, 2.5 mL) were added to a 25-mL oven-driedround-
bottomed flask containing6(20 mg, 0.080 mmol) un-der an open atmosphere at 23°C
. The resulting solution was
covered from light and stirred in an 80°Coil bath for 2.25 h. The solution was then cooled to 23°C
, and steps
subsequent to cooling were performed in a dark environment. The solution was washed with CH2Cl2
(1 mL), and
then the aqueous layer was acidified with KHSO4
(3 M, 10 mL). The aqueous layerwas ex
tracted with EtOAc(10 mL×3). The combined organic layers were dried over Na2SO4
, filtered, and concentrated under reduced
pressure using a rotary evaporator (T
water bath= 30°C) to afford 16 mg of TMC-205 (1)
as a pale yellow solid
(88% yield, >
95% purity).
Data for TMC-205 (1):
Rf= 0.24 (40% EtOAc in hexanes);
IR (film):νmax
= 3432 (broad, O-H), 2920,2851,1644 (C=O), 1528, 1451, 1349 cm-1;
1H NMR (500 MHz, 293K, CD3OD):δ
= 7.99 (d,J= 8.3 Hz, 1H, 4-H), 7.92 (s, 1H, 2-H), 7.48 (br s,1H, 7-H), 7.35 (dd,J= 8.3, 1.5 Hz, 1H, 5-H), 6.94 (d,J= 16 Hz, 1H, 10-H),
6.67 (d,J= 16 Hz, 1H, 9-H), 5.10 (br s, 1H, 12-H), 5.03 (br s, 1H, 12-H), 1.98 (s, 3H, 13-H);
13C NMR
(75MHz, 293 K, CD3OD):δ= 169.0, 143.7, 139.0, 134.0, 133.8, 131.3, 130.7, 127.3, 122.1, 121.3, 116.7, 111.1,
109.9, 18.8;
HRMS (EI+) calcd for C14H13NO2
[M+] 227.0946, found 227.0936.
see
TMC-205, a new transcriptional up-regulator of SV40 promoter produced by an undentified fungus. Fermentation, isolation, physico-chemical properties, structure determination and biological activities
J Antibiot 2001, 54(8): 628
A new transcriptional up-regulator designated TMC-205 was discovered from the fermentation broth of an unidentified fungal strain TC 1630 by using an SV40 promoter-luciferase reporter assay. Based on spectroscopic analyses, its structure was determined to be (E)-6-(3-methyl-1,3-butadienyl)- H-indole-3-carboxylic acid. Expression of the luciferase activity was activated ca. 2-, 4-, and 6-fold by 1, 10, and 100 microM TMC-205, respectively. TMC-205 activated the transcriptional activity in a manner dependent on the presence of the enhancer element of SV40 in its promoter region.

Filed under: Preclinical drugs Tagged: firefly luciferase, gene activation, indole, natural product, simian virus 40 promoter, TMC-205

Discovery of Imigliptin, a Novel Selective DPP-4 Inhibitor for the Treatment of Type 2 Diabetes

$
0
0
Abstract Image
 Figure imgf000003_0001
Imigliptin
CAS OF FREE BASE      1314944-07-4
C21 H24 N6 O
Benzonitrile, 2-​[[7-​[(3R)​-​3-​amino-​1-​piperidinyl]​-​2,​3-​dihydro-​3,​5-​dimethyl-​2-​oxo-​1H-​imidazo[4,​5-​b]​pyridin-​1-​yl]​methyl]​-
Sihuan Pharmaceutical
Imigliptin dihydrochloride is an orally-available dipeptidyl peptidase IV (CD26; DPP-IV; DP-IV) inhibitor in phase I clinical trials at Sihuan Pharmaceutical for the treatment of type 2 diabetes.
………………………………………………………………

http://www.google.com/patents/EP2524917A1?cl=en

 

(R)-2-[[7-(3-aminopiperidin-1-yl)-3,5-dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl]methyl]benzonitrile AS TFA SALT

1314944-08-5  CAS
C21 H24 N6 O . C2 H F3 O2
Benzonitrile, 2-​[[7-​[(3R)​-​3-​amino-​1-​piperidinyl]​-​2,​3-​dihydro-​3,​5-​dimethyl-​2-​oxo-​1H-​imidazo[4,​5-​b]​pyridin-​1-​yl]​methyl]​-​, 2,​2,​2-​trifluoroacetate (1:1)

………………………………………………………………………….

LEAD compd 1 as above ……….cas ………1314943-88-8
  • C19 H19 N5 O2
  • Benzonitrile, 2-​[[7-​[(3R)​-​3-​amino-​1-​piperidinyl]​-​2-​oxooxazolo[5,​4-​b]​pyridin-​1(2H)​-​yl]​methyl]​-

………………………………………

SEE  POLYMORPHS

EP2730575A1, WO2013007167A1

CN 102863440

http://www.google.com/patents/CN102863440A?cl=en

Dipeptidyl peptidase-IV (DPP-IV) inhibitors are a new generation of oral treatment of type 2 diabetes by enhancing the role of incretin activity, a non-insulin therapy. With conventional medicine for treating diabetes compared, DPP-IV inhibitors have not weight gain and edema and other adverse reactions. [0003] The compound shown in formula ⑴ (R) -2 – [[7 - (3 - amino-piperidine-I-yl) -3,5 - dimethyl-2 - oxo-2 ,3 - dihydro- -IH-imidazo [4,5-b] pyridin-I-yl] methyl] benzonitrile (referred to as the specification of compound A, in the patent application CN201010291056. 9 already described) is a DPP-IV inhibitor compounds , the DPP-IV has a strong inhibitory effect and high selectivity.

V

[0004] formula ⑴

Figure CN102863440AD00031

[0005] In the crystalline drug development research is very important, compound crystal form, will result in its stability, solubility and other properties are different. Therefore, the inventors of the compound or its salt polymorph A lot of research carried out, whereby it was confirmed, and the invention of the compound A crystalline salt.

3, Invention

[0006] The object of the present invention is to solve the above problems and to provide better stability, better maneuverability, good bioavailability and solubility of the compound A or a salt thereof and method for preparing the crystalline form.

[0007] The present invention provides formula (I), the compound A dihydrochloride salt polymorph I: using Cu-K α radiation, to angle 2 Θ (°) represents an X-ray powder diffraction at 8. 7 ± 0. 2 °, 19.4 ± 0.2 °, 23. 5 ± 0. 2 °, 27. 2 ± 0. 2 ° at a characteristic peaks.

Butterfly NC N

[0008] formula ⑴

Figure CN102863440AD00032

[0009] A compound of the dihydrochloride salt polymorph I, with Cu-Ka radiation, to angle 2 Θ (°) represents an X-ray powder diffraction peaks in addition to the features described above, it also at 12. 5 ± 0. 2 °, 22. 5 ± 0. 2 °, 25. 5 ± 0.2 ° at a characteristic peaks.

[0010] A compound of the dihydrochloride salt polymorph I, with Cu-κα exposed to radiation angle 2 Θ (°) represents an X-ray powder diffraction peaks in addition to the features described above, it also at 11.7 ± 0.2 °, 14.6 ± 0.2 °,

26. O ± 0.2 ° at a characteristic peak.

[0011] The present invention also provides the compound A dihydrochloride Preparation of polymorph I.

[0012] Compound A was dissolved in an organic solvent, and temperature, was added dropwise a stoichiometric ratio of hydrochloric acid, after the addition was complete stirring, filtered and dried to give the dihydrochloride salt of Compound A crystalline form I.

……………………………………………….

http://www.google.com/patents/EP2524917A1?cl=en

0r

WO 2011085643

  • Diabetes mellitus is a systemic chronic metabolic disease caused by a blood glucose level higher than normal level due to loss of blood glucose control. It is basically classified into four categories, including: type I (insulin-dependent) and type II (non-insulin-dependent), the other type and gestational diabetes. Type I and type II diabetes are primary diabetes, which are the two most common forms caused by the interaction of genetic and environmental factors. The cause of diabetes is very complicated, but in the final analysis, is due to absolute or relative insulin deficiency, or insulin resistance. It is characterized by the metabolic disorder of carbohydrate, protein, fat, electrolytes and water caused by absolute or relative insulin deficiency and the reduced sensitivity of target cells to insulin.
  • In recent years, because of the improvement of living level, changes in the diet structure, the increasingly intense pace of life and lifestyle of less exercise and many other factors, the global incidence of diabetes is rapidly increasing, so that diabetes has become the third chronic disease which has a serious threat to human health next to tumor and cardiovascular diseases. Presently, the number of the patients suffering from diabetes has exceeded 120 million in the world, and the number in our country is the second largest in the world. According to statistics, up to 40 million people have been diagnosed as diabetes in China, and the number of the patients is increasing at a rate of 1 million per year. Among them, patients having type I and type II diabetes accounted for 10% and 90% respectively. Diabetes has become the increasingly concerned public health issue.
  • The main drugs currently used for the treatment of type I diabetes are insulin preparations and their substitutes; for the treatment of type II diabetes, the main drugs are oral hypoglycemic agents, generally divided into sulfonylureas, biguanides, traditional Chinese medicine preparations, other hypoglycemic agents, and auxiliary medication. Although these drugs have good effects, they can not maintain long-term efficacy in reducing the high blood glucose, and can not effectively alleviate the condition against the cause of diabetes. Many of the anti-diabetic drugs can well control the blood glucose at the beginning, but their efficacy can not be maintained when the treatment using such drugs are continuously used. It is one of the main reasons why combination therapies or drugs in different classes are used. However, the existing anti-diabetic drugs is lack of long-term efficacy mainly because their mechanism of action is to increase the sensitivity of target tissues to insulin action or improve insulin-producing activity of pancreas, but these drugs have no targeted effect to the reduced function of the pancreatic β cell, which is the fundamental cause of diabetes.
  • Dipeptidyl peptidase-IV (DPP-IV) is widely present in the body, and is a cell surface protein involved in a variety of biological functions. It can degrade many active enzymes in vivo, such as glucagon like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), neuropeptide, substance P, and chemokines and the like. The deficiency of GLP-1 and GIP is the main cause resulting in type II diabetes (i.e., non-insulin-dependent diabetes). DPP-IV inhibitor is a new generation of anti-diabetic drug. It protects the activity of GLP-1, GIP and the like, stimulates the secretion of insulin, lowers blood glucose level by inhibiting the activity of DPP-IV, and does not cause hypoglycemia, weight gain, edema and other side effects. Its effect for lowering blood glucose level stops when a normal blood glucose level has been reached, and hypoglycemia will not occur. It can be used for a long term, and can repair the function of β-cells.
  • Sitagliptin is the first marketed DPP-IV inhibitor. It rapidly became a “blockbuster” drug after marketed in 2006 by Merck. The FDA approved the saxagliptin developed by AstraZeneca and Bristol-Myers Squibb on July 31, 2009. SYR-322 developed by Takeda has an activity and selectivity better than that of sitagliptin and saxagliptin, and is currently in the phase of pre-registration. In addition, there are three drugs in clinical phase III: BI-1356 (linagliptin) developed by Boehringer Ingelheim, PF-734200 (gosogliptin) developed by Pfizer Inc, and PHX1149 (dutogliptin) developed by Phenomix Inc. Nine drugs are in the clinical phase II, and seven drugs are in clinical phase I.
  • However, the limited varieties of drugs can not satisfy the clinical requirements. Accordingly, there is an urgent need for development of many DPP-IV inhibitor drugs to satisfy the clinical use.
      Example 17 The preparation of (R)-2-[[7-(3-aminopiperidin-1-yl)-3,5-dimethyl-2-oxo-2,3-dihydro-1
        -imidazo[4,5-b]pyridin-1-yl]methyl]benzonitrile (Compound 17) trifluoroacetate

(1)2,4-dichloro-6-methyl-3-nitropyridine

      • 6-methyl-3-nitropyridin-2,4-diol (1.7 g, 10 mmol) was dissolved in 10 mL POCl3, heated to 95°C, and stirred for 1.5 h. The excess POCl3 was removed through centrifugation. 100 mL ice water was carefully added. The reaction solution was extracted with ethyl acetate (80 mL×3). The organic phase was combined, washed with saturated brine, dried with anhydrous Na2SO4 and spinned to dryness to afford 1.773 g yellow powder with a yield of 85.7 %.

(2) (R)-1-(2-chloro-3-nitro-6-methylpyridin-4-yl)piperidin-3-yl tert-butyl carbamate

      • [0216]
        The specific operation referred to the step (1) described in Example 1 for details. 0.96 g 2,4-dichloro-6-methyl-3-nitropyridin (4.64 mmol), and 0.933 g R-tert-butylpiperidin-3-yl-carbamate (4.66 mmol) were charged to afford 1.1 g titled product with a yield of 63.9 %.

(3) (R)-1-(2-methylamino-3-nitro-6-methylpyridin-4-yl)piperidin-3-yl tert-butyl carbamate

      • The specific operation referred to the step (2) described in Example 1 for details, 1.1 g (R)-1-(2-chloro-3-nitro-6-methylpyridin-4-yl)piperidin-3-yl tert-butyl carbamate (2.97 mmol), and 5 mL 27 % solution of methylamine in alcohol were charged to afford 1.0 g titled product with a yield of 92.1 %.

(4) (R)-1-(2-methylamino-3-amino-6-methylpyridin-4-yl)piperidin-3-yl tert-butyl carbamate

      • The specific operation referred to the step (3) described in Example 1 for details. 1.0 g (R)-1-(2-methylamino-3-nitro-6-methylpyridin-4-yl)piperidin-3-yl tert-butyl carbamate (2.74 mmol), and 0.1 g 10% Pd-C were charged to afford 0.873 g titled product with a yield of 95 %.

(5)(R)-1-(3,5-dimethyl-2-oxo-2,3-dihydro-1

H

        -imidazo[4,5-b]pyridin-7-yl)piperidin-3-yl tert-butyl carbamate
      • The specific operation referred to the step (4) described in Example 1 for details. 873 mg (R)-1-(2-methytamino-3-amino-6-methylpyridin-4-yl)piperidin-3-yl tert-butyl carbamate (2.60 mmol), 849 mg triphosgene (2.86 mmol), and 1.39 mL triethylamine (10.4 mmol) were charged to afford 0.813 g titled product with a yield of 86.5 %.

(6)(R)-1-[1-(2-cyanobenzyl)-3,5-dimethyl-2-oxo-2,3-dihydro-1

H

        -imidazo[4,5-b] pyridin-7-yl]piperidin-3-yl tert-butyl carbamate
      • The specific operation referred to the step (5) described in Example 1 for details.813 mg (R)-1-(3,5-dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-7-yl)piperidin-3-yl tert-butyl carbamate (2.25 mmol), 441 mg 2-(bromomethyl)benzonitrile (2.25 mmol), and 621 mg potassium carbonate (4.50 mmol) were charged to afford 0.757 g titled product with a yield of 70.5%.

(7)(R)-2-[[7-(3-aminopiperidin-1-yl)-3,5-dimethyl-2-oxo-2,3-dibydro-1-imidazo [4,5-b]pyridin-1-yl]methyl]benzonitrile trifluoroacetate

    • The specific operation referred to the step (6) described in Example 1 for details. 750 mg (R)-1-[1-(2-cyanobenzyl)-3,5-dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin -7-yl]piperidin-3-yl tert-butyl carbamate (1.57 mmol), and 8.5 mL trifluoroacetic acid were charged to afford 0.680 g titled product with a yield of 88.3%.
      Molecular formula: C21H24N6O Molecular weight: 376.45 Mass spectrum (M+H): 377.2
      1H-NMR(D2O, 400 MHz): δ 7.64 (d, 1H), 7.42 (t, 1H), 7.29 (d, 1H), 6.93(d, 1H), 6.76(s, 1H), 5.39(d, 1H), 5.25(d, 1H), 3.27(s, 3H), 3.04(m, 1H), 2.90(m, 2H), 2.80-2.60 (m, 2H), 2.48 (m, 1H), 2.32 (s, 3H), 1.90 (m, 1H), 1.54 (m, 1H), 1.32 (m, 1H).

…………………….

PAPER

We report our discovery of a novel series of potent and selective dipeptidyl peptidase IV (DPP-4) inhibitors. Starting from a lead identified by scaffold-hopping approach, our discovery and development efforts were focused on exploring structure–activity relationships, optimizing pharmacokinetic profile, improving in vitro and in vivo efficacy, and evaluating safety profile. The selected candidate, Imigliptin, is now undergoing clinical trial.
Discovery of Imigliptin, a Novel Selective DPP-4 Inhibitor for the Treatment of Type 2 Diabetes

Department of Project Management, Medicinal Chemistry, Process, Pharmacology, Drug Metabolism and Pharmacokenetics, Toxicology, XuanZhu Pharma, 2518 Tianchen Street, Jinan, Shandong, The People’s Republic of China
School of Pharmaceutical Sciences & Institute of Human Virology, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, The People’s Republic of China
ACS Med. Chem. Lett., Article ASAP
DOI: 10.1021/ml5001905

http://pubs.acs.org/doi/abs/10.1021/ml5001905

synthesis………http://pubs.acs.org/doi/suppl/10.1021/ml5001905/suppl_file/ml5001905_si_001.pdf

data for LEAD compd 1

Abstract Image

mono-TFA solvate (160mg, 71%).

1H NMR (d-DMSO + D2O, 600 MHz):
δ
8.01 (d, 1 H), 7.89 (d, 1 H), 7.69 (t, 1 H),
7.53 (t, 1 H), 7.40 (d, 1 H), 7.13 (d, 1 H),
5.41 (d, 1 H), 5.30 (d, 1 H), 3.25 (d, 1 H), 3.05
(m, 1 H), 2.93 (d, 1 H), 2.77 (m, 1 H),
2.65 (m, 1H), 1.95 (m, 1 H), 1.66 (m, 1 H),
1.46-1.26 (m, 2 H).
Molecular Formula C19H19N5O2:(M+H) 350.2
compd 27
mono-TFA solvate (680 mg, 88%).1H NMR (D2O, 400 MHz):δ7.64 (d, 1 H), 7.42 (t, 1 H), 7.29 (d, 1 H), 6.93(d, 1 H),
6.76 (s, 1 H), 5.39 (d, 1 H), 5.25 (d, 1 H), 3.27(s, 3 H), 3.04 (m, 1 H), 2.90 (m, 2 H),
2.80-2.60 (m, 2 H), 2.48 (m, 1 H), 2.32 (s, 3 H), 1.90 (m, 1 H), 1.54 (m, 1 H), 1.32 (m,1 H).
Molecular Formula C21H24N6O: (M+H) 377.2.
……………………………………………………………………………………….

Start of the first 4 volunteers in Imigliptin Dihydrochloride Phase I clinical trial

2013-10-18 16:31:08  Copyfrom: Sihuan Pharmaceutical Holdings Group Ltd.

Sihuan R&D clinical research centre (based in Beijing) announced that four healthy volunteers (human subjects) were administrated Imigliptin Dihydrochloride at first dosage of 5mg this morning around 8:00 am on 18 Oct 2013, and they all are in good conditions without any observed adverse effects so far.This is the first category 1.1 innovative drug independently developed by Sihuan Group which has now officially entered into clinical trials; that is from laboratory research into human studies. The preclinical studies of Imigliptin Dihydrochloride, a novel DPP-4 inhibitor treating type II diabetes, demonstrate excellent in vitro and in vivo activities and selectivities. In animal studies, it can protect pancreatic β–cells in long-term treatment. Pharmacokinetic studies of Imigliptin Dihydrochloride show attractive profile of good oral bioavailability, fast absorption and onset, and longer half-life compatible with the once daily dosing. We anticipate the above mentioned preclinical profiles be confirmed in our ongoing clinical trials.
………………………..

 Sitagliptin (sitagliptin) is the first one listed on the DPP-IV inhibitor, in 2006 after the listing quickly became a blockbuster for Merck. July 31, 2009, FDA has approved AstraZeneca and Bristol-Myers Squibb developed saxagliptin (saxagliptin) listed. Takeda (Taketa)’s SYR-322 activity and selectivity are superior to sitagliptin and saxagliptin, is currently in pre-registration. In addition, there are three stages of drug is in phase III: Bo Mingge Yan Gehan’s BI-1356 (Iinagliptin), Pfizer’s PF-734200 (gosogliptin), phenomix company PHX 1149 (dutogliptin) [0007]

In phase II drug has nine, in phase I of seven.

Figure CN102127072AD00091

[0008] However, the limited varieties of drugs, can not meet the clinical needs, the urgent need to develop more of the DPP-IV inhibitor drugs to meet the clinical medication.

 

 

Example 17 (R)-2-ΓΓ7-(3 ~ amino-piperidin-yl) -3, 5_ dimethyl _2_ oxo, 3_ dihydro-IH-blind half and P “4,5 Pyridine-b1-i-a] benzonitrile Jiamou 1 (Compound 17) The system of the

[0451]

Figure CN102127072AD00533

[0452] (1) 2,4 – dichloro-6 – methyl-nitropyridine _3_

[0453]

Figure CN102127072AD00534

[0454] A mixture of 6 – methyl-3 – nitropyridine 2,4 – diol (1. Lg, IOmmol) dissolved in IOmL POCl3, heated to 95 ° C, stirred for 1.5 hours, rotating to excess POCl3 , ice water was added carefully IOOmL, extracted with ethyl acetate (80mLX3), the combined organic phases washed with saturated brine, dried over anhydrous Na2SO4, rotary done 1. 773g yellow powder, yield 85.7%.

[0455] (2) (R)-I-(2 – chloro-nitro _6_ _3_ _4_ picoline) piperidin-_3_ t-butyl carbamate

[0456]

Figure CN102127072AD00541

[0457] Specific operation in Reference Example 1 (1), cast _ 2,4 dichloro-6 – methyl-_3_ nitropyridine 0. 96g (4. 64mmol), R-tert-butyl piperidin-_3_ yl – carbamate 0. 933g (4. 66mmol), to give the product 1. Ig, yield 63.9%.

[0458] (3) (R)-I-(2 – methylamino-nitro _6_ _3_ _4_ picoline) piperidin-_3_ t-butyl carbamate

[0459]

Figure CN102127072AD00542

[0460] Specific operation in Reference Example 1 (2), cast (R) -1 – (2 – chloro-nitro _6_ picoline _3_ _4_ yl)-piperidin-3 – tert-butyl imino ester 1. Ig (2. 97mmol), 27% methylamine alcohol solution 5mL, to give the product 1. Og, yield 92.1%.

[0461] (4) (R)-I-(2 – methyl amino -3 – diamino-6 – methylpyridine _4_ yl) piperidin-_3_ t-butyl carbamate

[0462]

Figure CN102127072AD00543

[0463] Specific operation in Reference Example 1 (3), cast (R)-l_ (2 – methylamino-methyl-4 _3_ nitro _6_ – yl) piperidin-3 – tert- butyl carbamate 1.0g (2. 74mmol), 10% Pd-C 0. lg, to give the product 0. 873g, 95% yield.

[0464] (5) (R)-I-(3,5 – dimethyl-2 – oxo-2 ,3 – dihydro-IH-imidazo [4,5 _b] pyridin _7_ yl)

Piperidin-3 – t-butyl carbamate

[0465]

Figure CN102127072AD00544

[0466] Specific operation in Reference Example 1 (4), cast ((R)-l_ (2 – methylamino-4 _3_ methyl amino _6_ – yl) piperidin-3 – yl t-butyl carbamate 873mg (2. 60mmol), triphosgene 849mg (2. 86mmol), triethylamine 1. 39mL (10. 4mmol), to give the product 0. 813g, yield 86.5% 0

[0467] (6) (R)-l-[l_ (2 - cyano-benzyl) -3,5 _ dimethyl-2 - oxo-2 ,3 - dihydro-IH-imidazo [4, 5 -b] pyridin-7 – yl] piperidin-3 – t-butyl carbamate

[0468]

Figure CN102127072AD00551

[0469] Specific operation in Reference Example 1 (5), cast (R)-I-(3,5 – dimethyl-2 – oxo-2 ,3 – dihydro-IH-imidazo [4, 5-b] pyridin-7 – yl) piperidin-3 – t-butyl carbamate 813mg (2. 25mmol), 2_ (bromomethyl) benzonitrile 441mg (2. 25mmol), potassium carbonate 621mg (4. 50mmol), to give the product 0. 757g, yield 70.5%.

[0470] (7) (R) -2 – [[7 - (3 - amino-piperidin-1 - yl) -3,5 - dimethyl-2 - oxo-2 ,3 - dihydro-IH- imidazo [4,5-b] pyridin-1 – yl] methyl] benzonitrile

[0471]

Figure CN102127072AD00552

[0472] Specific operation in Reference Example 1 (6), cast (R)-l-[l_ (2 - cyano-benzyl) -3,5-dimethyl-2-_ - oxo - two H-IH-imidazo [4,5-b] pyridin-7 – yl] piperidin-3 – t-butyl carbamate 750mg (l. 57mmol), trifluoroacetic acid 8. 5mL, 0 to give the product . 680g, yield 88.3%.

[0473] MF = C21H24N6O MW: 376 * 45 MS (M + H): 377. 2

[0474] 1H-NMR (D2OdOOMHz): δ 1. 32 (1Η, m), 1. 54 (1H, m), 1. 90 (1H, m), 2. 32 (3H, s), 2. 48 (1H, m), 2. 80-2. 60 (m, 2H), 2. 90 (2H, m), 3. 04 (1H, m), 3. 27 (3H, s), 5. 25 ( 1H, d), 5. 39 (1H, d), 6. 76 (1H, s), 6. 93 (1H, d), 7. 29 (1H, d), 7. 42 (1H, t), 7. 64 (1H, d) ·

WO2004050658A1 * Dec 3, 2003 Jun 17, 2004 Boehringer Ingelheim Pharma Novel substituted imidazo-pyridinones and imidazo-pyridazeiones, the production and use thereof as medicaments
WO2009099594A1 * Feb 2, 2009 Aug 13, 2009 Luke W Ashcraft Certain chemical entities, compositions and methods
WO2011085643A1 * Jan 17, 2011 Jul 21, 2011 Kbp Biomedical Co., Ltd. Fused pyridine derivatives
CN101228164A * May 11, 2006 Jul 23, 2008 布里斯托尔-迈尔斯·斯奎布公司 Pyrrolopyridine-based inhibitors of dipeptidyl peptidase IV and methods

Filed under: Uncategorized Tagged: DIABETES, dipeptidyl peptidase IV, DPP-4 inhibitor, imigliptin, OGTT, pyridinylimidazolone, scaffold-hopping

Cell stress inflames the gut: New insights into chronic bowel inflammation

$
0
0

Originally posted on lyranara.me:

Cell stress inflames the gut

This is a cross section of an injury in the large intestine with the intestinal epithelium shown in red. The healing process is characterized by rapid cell division in the wound region (green areas). Where there is a high concentration of the CHOP protein, the epithelium is slower to heal (region with red outline). Credit: N. Waldschmitt / TUM

Inflammatory bowel disease (IBD) is a common condition in western industrialized countries. What triggers it, however, is not yet fully understood. Nutrition researchers at Technische Universität München (TUM) have now identified a new step in the pathogenesis. They used a mouse model to show that a protein in the cells of the intestinal mucosa is one of the root causes of the disease.

Over 3.5 million people in Europe and the US suffer from Crohn’s disease or ulcerative colitis – the two most common forms of IBD. Chronic bowel inflammation is…

View original 367 more words


Filed under: Uncategorized

Researchers find ASC specks released by cells eaten by other immune cells leads to multiplying inflammation

$
0
0

Originally posted on lyranara.me:

Microscopy of BMDMs. Credit: Nature Immunology (2014) doi:10.1038/ni.2913

Two teams of researchers, one working in Spain, the other in Germany have independently discovered a connection between ASC specks released by macrophages during cell death and ingestion by other macrophages that can lead to multiplying inflammation. Both teams have published their findings in the journalNature Immunology.

Inflammation in the body can be a good thing, helping to heal, but in many cases, it can be a bad thing, causing harm rather than good. Pneumonia, for example, is one prominent example of inflammation gone awry. Another instance where it occurs is in some autoimmune diseases, where the body fights itself, quite often using inflammation as a tool. The two teams in Europe have now found one of the mechanisms responsible for multiplying inflammation, which is where inflammation spreads beyond a localized area, seemingly, without a good reason.

ASC specks are molecular assemblages…

View original 276 more words


Filed under: Uncategorized

Article 0

$
0
0

Originally posted on lyranara.me:

βMδVL production

(A) Total biosynthetic pathway for the production of βMδVL. (B) A semisynthetic route to produce βMδVL from mevalonate. (C) Conversion of βMδVL to an elastomeric triblock polymer that can be repeatedly stretched to 18 times its original length without breaking. Copyright © PNAS, doi:10.1073/pnas.1404596111

The advantages of sustainable, biodegradable, carbon-neutral and bioderived renewable polymers – that is, synthetic polymers based on biomolecules produced by living organisms – are reflected in the extent of the research recently conducted into their development. However, such bioderived (or biobased) polymers currently account for a very small percentage of the plastics and elastomers market now dominated by oil-based polymers. (An elastomer, such as rubber, is a polymer that is viscoelastic – that is, both viscous and elastic – with weak intermolecular forces.) To achieve market growth, synthetic polymers have to compete strongly not only in performance, but in large-scale production costs as well –…

View original 936 more words


Filed under: Uncategorized

Odor Code for Food Based on a Few Volatile Substances

$
0
0

thumbnail image: Follow Your Nose

 

The actual flavor of a food is experienced through our sense of smell rather than with our tongue. However, of the large number of volatile compounds in foods, only about 230 are involved in the scent, as reported by German scientists in the journal Angewandte Chemie. The different smells derive from characteristic combinations of three to forty of these odorants.

http://www.chemistryviews.org/details/ezine/6323291/Follow_Your_Nose.html?utm_source=dlvr.it&utm_medium=facebook

 


Filed under: Uncategorized Tagged: nose, odor

Too-clean homes may encourage child allergies, asthma

$
0
0

Originally posted on Atasteofcreole's Blog:

http://www.live5news.com/story/25711359/too-clean-homes-may-encourage-child-allergies-asthma-study

(HealthDay News) — Cleanliness may be next to godliness, but a home that’s too clean can leave a newborn child vulnerable to allergies and asthma later in life, a new study reports.

Infants are much less likely to suffer from allergies or wheezing if they are exposed to household bacteria and allergens from rodents, roaches and cats during their first year of life, the study found.

The results stunned researchers, who had been following up on earlier studies that found an increased risk of asthma among inner-city dwellers exposed to high levels of roach, mouse and pet droppings and allergens.

“What we found was somewhat surprising and somewhat contradictory to our original predictions,” said study co-author Dr. Robert Wood, chief of the Division of Allergy and Immunology at the Johns Hopkins Children’s Center in Baltimore. “It turned out to be completely opposite — the more of those three allergens…

View original 719 more words


Filed under: Uncategorized

Study Finds Shu Gan Liang Xue Herbal Formula Has Breast Cancer Anti Tumor Effect

$
0
0

Originally posted on lyranara.me:

There are a host of herbal formulas that show anti tumor properties for various cancers in clinical studies.  Chinese researchers publishing in the Journal of Ethnopharmacology recently conducted a study looking at the effect of Shu Gan Liang Xue Formula on breast cancer tumors – particularly estrogen receptor positive breast cancer line ZR-75-1.  Researchers investigated these anti-tumor functions in vitro and in vivo.

Shu Gan Liang Xue is a traditional Chinese herbal formula, it is comprised of the following herbs:

  • Chai Hu
  • Bai Shao
  • Wu Wei Zi
  • Dan Pi
  • Bai Wei
  • Zi Cao

Researchers understand that estrogen is a driver behind breast cancer.  Two other substances, aromatase and steroid sulfatase are enzymes which contribute to estrogen synthesis.  The researchers found that Shu Gan Liang Xue inhibits aromatase and steriod sulfatase which decreases their expression and their effect of estrogen synthesis.  They found this both in vitro and in vivo.

In addition to…

View original 87 more words


Filed under: Uncategorized

US Orphan Drug Market Outlook 2018 ……….download available

$
0
0

 

US Orphan Drug Market Outlook 2018
Academia.edu

󰁕󰁓 󰁏󰁲󰁰󰁨󰁡󰁮 󰁄󰁲󰁵󰁧 󰁍󰁡󰁲󰁫󰁥󰁴 󰁏󰁵󰁴󰁬󰁯󰁯󰁫 󰀲󰀰󰀱󰀸 󰂩󰁋󰁵󰁩󰁣󰁋 󰁒󰁥󰁳󰁥󰁡󰁲󰁣󰁨
US Orphan Drug Pipeline Insight by Phase & Indication 5.1 Research 5.2 Preclinical 5.3 Phase I 5.4 Phase I/II 5.5 Phase II 5.6 Phase II/III 5.7 Phase III …

http://www.academia.edu/7453102/US_Orphan_Drug_Market_Outlook_2018 …………… download at this site

Market Overview

In the largest market for orphan drugs, USA, there was a shortage of adequate therapies for treating many rare diseases. These therapies were not developed as companies did not expect these drugs to be highly profitable. Hence there was a lack of interest and thus investment on the part of pharma companies in the USA. Therefore, the FDA introduced incentives for developing such drugs. This step taken by the FDA was successful in creating a thriving market for orphan drugs. It was in the USA first that a special law exclusively for governing orphan drugs was framed in the form of the Orphan Drug Act of 1983. This led to an increase in the popularity of orphan drugs. The FDA also has been continuously increasing its efforts to support this market by providing significant financial and non-financial incentives to the pharmaceutical companies to attract them. This has been one of the major drivers of growth for the US orphan drugs market.

Figure 3-1: US Orphan Drug Market (US$ Billion), 2012-2018

2012201320142015201620172018

Source: KuicK Research

see my profile

http://ictmumbai.academia.edu/AnthonyMelvinCrastoPhD

The future of orphan drugs - drugdiscovery.com


Filed under: 0rphan drug status Tagged: Orphan Drug, us

The US FDA has issued a Warning Letter to Tianjin Zhongan Pharmaceutical Co. Ltd. in Tianjin, China.

$
0
0

 

FDA issues Warning Letter for API Facility

http://www.gmp-compliance.org/enews_4367_FDA%20issues%20Warning%20Letter%20for%20API%20Facility_8509,S-WKS_n.html
The US FDA has issued a Warning Letter to Tianjin Zhongan Pharmaceutical Co. Ltd. in Tianjin, China. The company produces APIs and failed to establish adequate GMP procedures at the facility. Read more about the FDA Warning Letter.


FDA issues Warning Letter for API Facility
The US FDA has issued a Warning Letter to Tianjin Zhongan Pharmaceutical Co. Ltd. in Tianjin, China. The company produces APIs and failed to establish adequate GMP procedures at the facility.

For quite some time India was in the center of attention and very little was heard about GMP problems in China (see also RAPS article). This is a bit surprising because a number of non-compliant facilities have been detected in the past. Also the facilities which caused the Heparin Scandal were located in China. The last enforcement action from FDA which became public referred to Import Alerts for the manufacturer Zhejiang Jiuzhou Pharmaceutical and for Zhejiang Zonebanne in China.

The new Warning Letter for Tianjin Zhongan Pharmaceutical lists a number of different non compliance findings. These findings refer to equipment cleaning (risk of cross contamination), not adequate Change Control procedures and failure to adequately review and investigate product deviations. However, in difference to the Warning Letters sent to Indian manufacturers recently data integrity issues have not been detected.

Interestingly the API manufacturer Tianjin Zhongan Pharmaceutical is not listed in EudraGMDP the inspection database in the EU. No entry for GMP Certificates or GMP Non-Compliance Report are available.

Source: FDA Warning Letter to Tianjin Zhongan Pharmaceutical

Tianjin Zhong’an Pharmaceutical Company Ltd. locates in the southwest of Tianjin. Set up in 1988, the company underwent operation mechanism reform in 2002 and acquired the present name.

The company covers an area of 82,000 square meters, with a construction area of 31,600 square meters and an afforested area of 13,300 square meters. It has over 600 staff members, more than 50 of whom have been conferred intermediate or advanced titles of technical post. The company produces 10 major chemical bulk pharmaceuticals, including Caffeine, Theophylline, Aminophylline, Metronidazole, Metronidazole Benzoate, Nifedipine, Secnidazole and Xanthinol Nicotinate. Its annual production capacity amounts to 4000 ton, with a sales volume of approximately RMB 250 million. Two leading products in the company are Caffeine and Metronidazole.

Zhong’an Pharmaceutical enjoys a self-management power over import and export., 90% of its products are aimed at international market, with 60% of which sold directly to world-renowned pharmaceutical and beverage enterprises. It has established a sales network which covers more than 30 countries and regions, including some European and American countries, Hong Kong, Taiwan and Macao, countries in Southeast and Midwest Asia, and Russia.

Zhong’an Pharmaceutical has set up a full set of quality assurance system, and owns a central laboratory with advanced analyse instruments that has got the title of Export Enterprise Lab and approved by Tianjin entry-exit inspection and quarantine bureau. All workshops of the company are dedicated to avoid the issue of cross pollution. Every stage of production strict complies with the cGMP, which led to the products has been enjoying a high reputation both domestic and overseas market.

Since 2000, the company has obtained GMP and ISO9001certificates, and conferred the title of Tianjin High-new Tech Enterprise and Municipal-level Key Technical Center. Both of leading products Metronidazole and Caffeine have got COS issued by EDQM and DMF register number from US FDA. Also Caffeine has got “Foreign Manufacturer Validation Certificate” from Japan Health Ministry and KOF-K and Halal certificates.

 


Filed under: Regulatory Tagged: china, Tianjin, Tianjin Zhongan Pharmaceutical Co. Ltd, Warning Letter, Warning Letter to Tianjin Zhongan Pharmaceutical

Prologue to Cancer – ebook 4 – Where are we in this journey?

Summary of Translational Medicine – Cardiovascular Diseases – Part 1


Epilogue: Envisioning New Insights in Cancer Translational Biology

Stability Data for ANDAs in the USA: a new Q&A Document of the FDA provides further Clarity

$
0
0

 

Stability Data for ANDAs in the USA: a new Q&A Document of the FDA provides further Clarity
The applicant for an ANDA in the USA has to submit data of several stability tests. The FDA guidance on this topic coming into force last year left open some issues, however, that now are clarified with a questions and answers document published lately.

Read more.

http://www.gmp-compliance.org/enews_4352_Stability%20Data%20for%20ANDAs%20in%20the%20USA%3A%20a%20new%20Q%26A%20Document%20of%20the%20FDA%20provides%20further%20Clarity_8445,8489_n.html

Stability Data for ANDAs in the USA: a new Q&A Document of the FDA provides further Clarity

The FDA Guidance for Industry with the title “ANDAs: Stability Testing of Drug Substances and Drug Products” was published in the Federal Register on 20 June 2013 (also see our News dated 1 August 2013) and is addressed to applicants for ANDAs in the USA. This guidance describes the stability data the FDA expects in the documents submitted for an ANDA and is rather short having only five pages. As expected, the FDA received vast amounts of questions concerning certain problems that were not answered clearly in the guidance. Therefore, the Agency was prompted to address these questions in a questions and answers document. This document has the title “ANDAs: Stability Testing of Drug Substances and Drug Products – Question and Answers” and was published on the FDA “Guidance”-Website in May 2014.

The questions and answers are addressed in the following five chapters:

  • A. General
  • B. Drug Master File
  • C. Drug Product Manufacturing and Packaging
  • D. Amendments to Pending ANDA Application
  • E. Stability Studies

Some of the case studies discussed in these chapters are rather complex and therefore are answered in detail. In the following some questions and answers are listed for each chapter by way of example.

A. General
Question: Can an ANDA be submitted with 6 months of accelerated stability and 6 months of long-term stability data?
Answer: Yes. An ANDA applicant should submit this data. However, if 6 months of accelerated data show a significant change or failure of any quality attribute, the applicant should also submit 6 months of intermediate data at the time of submission.

Question: In the event of an adverse change of quality attributes at accelerated condition: When do intermediate stability studies need to be initiated?
Answer: An ANDA applicant should start accelerated, intermediate, and long-term stability studies at the same time so the data are available at the time of submission, if needed.

Question: During the review cycle, will the application need to be updated with 12 months of long-term data?
Answer: Yes. FDA will grant a shelf life period to the drug product of two times the available long-term data at the time of approval (up to 24 months). This is on condition, however, that the submitted stability data are satisfactory, and data evaluation and appropriate commitments are provided. With this the authority follows a recommendation of the Guideline ICH Q1E.

B. Drug Master File
Question: How many months of long-term and accelerated data are required when a “Completeness Assessment” is performed on the Drug Master File?  Also, what should the stability section contain for a Completeness Assessment?
Answer: To pass the Completeness Assessment, the DMF should include the stability protocol and commitments. It also should contain data demonstrating that stability studies have started.  The initial and one additional time point for the accelerated studies and long-term studies are sufficient. If the DMF does not meet the requirements for a successful assessment (see the following question/answer) the DMF holder must hand in updated stability data later.

Question: Are stability data from three current good manufacturing practice (CGMP) batches required to be filed in the DMF to support the active pharmaceutical ingredient retest date? How many months of long-term and accelerated data are required for pilot scale batches?
Answer: Yes. The DMF should contain data from stability studies on at least three primary batches of the API (these batches should be made under cGMP conditions) and the batches should be manufactured to a minimum of pilot scale (also see ICH Q1A(R2)).
The FDA stability guidance recommends 6 months of accelerated data and 6 months of long-term data for the pilot scale batches to be submitted for a full scientific review of the DMF.  Additional long-term data for all three batches, as the data becomes available through the proposed retest period, should be submitted as an amendment.

C. Drug Product Manufacturing and Packaging
Question: What is the Agency’s position on using different lots of APIs and/or packaging materials?  How many API lots should be used in the manufacture of finished product lots used to support the ANDA?
Answer: It is not necessary to use different lots of packaging material, except in cases where the packaging material could affect drug product performance and/or delivery.
A minimum of two lots of the drug substance should be used to prepare the three primary batches of drug product. For nasal aerosols and nasal sprays, you should use three different lots of drug substance.

Question: Should the small scale batches be packaged with commercial equipment?  Is it acceptable to package using research equipment?
Answer: Yes. Small scale batches should be packaged with commercial equipment.  Anyway, the packaging equipment should be similar to that proposed for use prior to market distribution.
No, it is not recommended to package small scale batches using research equipment or by hand. …

D. Amendments to Pending ANDA Application
Question: What are the recommendations for amendments and responses filed to pending ANDAs after issuance of the final FDA stability guidance?
Answer: All amendments submitted to pending ANDAs after the effective date of the final FDA stability guidance will be held to the standards in place concerning stability data at the time of the original ANDA submission, unless there is a concern with the submitted stability data.

E. Stability Studies
Question: Can the Agency clarify expectations for the storage positions for products placed into the stability program?
Answer: For primary batches of liquids, solutions, semi-solids, and suspensions, the product should be placed into an inverted (or horizontal) position and an upright position. For routine stability studies, the applicant should pick the worst case orientation for the study.

Question: Can the Agency clarify expectations around the number of batches to support tests such as preservative effectiveness and extractable leachable testing?
Answer: One of the primary batches of the drug product should be tested for antimicrobial preservative effectiveness (in addition to preservative content) at the end of the proposed shelf life.  The drug product specification should include a test for preservative content, and this attribute should be tested in all stability studies.
Extraction/leachable studies are generally one-time studies. However, if multiple types of containers/closures are employed for packaging, then additional studies could be recommended.

The FDA tries to clarify the cases described in this Q&A document as clear and as much in detail as possible. In doing so the Agency complements its declarations by numerous indications concerning the provisions in the ICH guidelines Q1A(R2), Q1D, Q1E and in 21 CFR Part 211. Thereby, this very important and updated document covers most situations with regard to stability testing for ANDAs.

 

 


Filed under: Regulatory Tagged: STABILITY, usfda

What GMP Changes can we still expect for 2014?

$
0
0

What GMP Changes can we still expect for 2014?

http://www.gmp-compliance.org/enews_4349_What%20GMP%20Changes%20can%20we%20still%20expect%20for%202014%3F_n.html

 

 

Heraclitus once said: “There is nothing permanent except change”. This statement is even true for the rather conservative GMP environment. What can we still expect for 2014? The answer to that question can be found in a work plan of EMA’s GMP/GDP Inspectors Working Group.

What are the coming plans?

The finalisation of the revision of Chapter 6 (Quality Control) of the EU GMP Guide is already completed (April 2014). The revised chapter will apply as of October 2014.

The following topics are also addressed in the work paper:

  • Inspections under the centralised system
  • Mutual Recognition Agreements (MRAs)
  • Harmonisation topics
  • Collaboration with the EU Commission (the collaboration should enable by the end of 2014 the publication of the GDP guidelines for APIs and  the risk assessment guidelines to establish GMP for excipients)
  • Collaboration with other groups (i.e. Reverse Osmosis for the production of WFI and biological indicators for monitoring and the control of sterilisation are topics addressed together with the EDQM in Strasburg)

Please also see the complete “Work plan for GMP/GDP Inspectors Working Group for 2014“.


Filed under: GMP Tagged: GMP

Bayer HealthCare has obtained approval from the Japanese Ministry of Health, Labour and Welfare (MHLW) for its Nexavar (sorafenib) for treatment of patients with unresectable differentiated thyroid carcinoma.

$
0
0

Sorafenib2DACS.svg

Sorafenib

(4-(4-(3-(4-chloro-3-(trifluoromethyl)phenyl)ureido)phenoxy)-N-methylpicolinamide)

BAY 43-9006

Sorafenib3Dan.gif

Bayer HealthCare has obtained approval from the Japanese Ministry of Health, Labour and Welfare (MHLW) for its Nexavar (sorafenib) for treatment of patients with unresectable differentiated thyroid carcinoma.

http://www.pharmaceutical-technology.com/news/newsbayers-nexavar-receives-japanese-approval-4300422?WT.mc_id=DN_News

Bayer HealthCare has obtained approval from the Japanese Ministry of Health, Labour and Welfare (MHLW) for its Nexavar (sorafenib) for treatment of patients with unresectable differentiated thyroid carcinoma.

Nexavar’s approval in Japan is supported by data from the multicentre, placebo-controlled Phase III DECISION (‘stuDy of sorafEnib in loCally advanced or metastatIc patientS with radioactive Iodine refractory thyrOid caNcer’) study.

The international Phase III DECISION study, which randomised a total of 417 patients, met its primary endpoint of extended progression-free survival. Safety and tolerability profile of sorafenib was generally consistent with the known profile of sorafenib.

The most common treatment-emergent adverse events in the sorafenib arm were hand-foot skin reaction, diarrhea, alopecia, weight loss, fatigue, hypertension and rash.

Nexavar was awarded orphan drug status by the MHLW for thyroid carcinoma in September 2013.

 

Sorafenib (co-developed and co-marketed by Bayer and Onyx Pharmaceuticals as Nexavar),[1] is a drug approved for the treatment of primary kidney cancer (advanced renal cell carcinoma), advanced primary liver cancer (hepatocellular carcinoma), and radioactive iodine resistant advanced thyroid carcinoma.

 

 

Medical uses

At the current time sorafenib is indicated as a treatment for advanced renal cell carcinoma (RCC), unresectable hepatocellular carcinomas (HCC) and thyroid cancer.[2][3][4][5]

Kidney cancer

An article in The New England Journal of Medicine, published January 2007, showed compared with placebo, treatment with sorafenib prolongs progression-free survival in patients with advanced clear cell renal cell carcinoma in whom previous therapy has failed. The median progression-free survival was 5.5 months in the sorafenib group and 2.8 months in the placebo group (hazard ratio for disease progression in the sorafenib group, 0.44; 95% confidence interval [CI], 0.35 to 0.55; P<0.01).[6] A few reports described patients with stage IV renal cell carcinomas that were successfully treated with a multimodal approach including neurosurgical, radiation, and sorafenib.[7] This is one of two TGA-labelled indications for sorafenib, although it is not listed on the Pharmaceutical Benefits Scheme for this indication.[5][8]

Liver cancer

At ASCO 2007, results from the SHARP trial[9] were presented, which showed efficacy of sorafenib in hepatocellular carcinoma. The primary endpoint was median overall survival, which showed a 44% improvement in patients who received sorafenib compared to placebo (hazard ratio 0.69; 95% CI, 0.55 to 0.87; p=0.0001). Both median survival and time to progression showed 3-month improvements. There was no difference in quality of life measures, possibly attributable to toxicity of sorafenib or symptoms related to underlying progression of liver disease. Of note, this trial only included patients with Child-Pugh Class A (i.e. mildest) cirrhosis. The results of the study appear in the July 24, 2008, edition of The New England Journal of Medicine. Because of this trial Sorafenib obtained FDA approval for the treatment of advanced hepatocellular carcinoma in November 2007.[10]

In a randomized, double-blind, phase II trial combining sorafenib with doxorubicin, the median time to progression was not significantly delayed compared with doxorubicin alone in patients with advanced hepatocellular carcinoma. Median durations of overall survival and progression-free survival were significantly longer in patients receiving sorafenib plus doxorubicin than in those receiving doxorubicin alone.[10] A prospective single-centre phase II study which included the patients with unresectable hepatocellular carcinoma (HCC)concluding that the combination of sorafenib and DEB-TACE in patients with unresectable HCC is well tolerated and safe, with most toxicities related to sorafenib.[11] This is the only indication for which sorafenib is listed on the PBS and hence the only Government-subsidised indication for sorafenib in Australia.[8] Along with renal cell carcinoma, hepatocellular carcinoma is one of the TGA-labelled indications for sorafenib.[5]

Thyroid cancer

A phase 3 clinical trial has started recruiting (November 2009) to use sorafenib for non-responsive thyroid cancer.[12] The results were presented at the ASCO 13th Annual Meeting and are the base for FDA approval. The Sorafenib in locally advanced or metastatic patients with radioactive iodine-refractory differentiated thyroid cancer: The Phase 3 DECISION trial showed significant improvement in progression-free survival but not in overall survival. However, as is known, the side effects were very frequent, specially hand and foot skin reaction.[13]

Adverse effects

Adverse effects by frequency
Note: Potentially serious side effects are in bold.
Very common (>10% frequency)

Common (1-10% frequency)

  • Transient increase in transaminase

Uncommon (0.1-1% frequency)

Rare (0.01-0.1% frequency)

Mechanism of action

Sorafenib is a small molecular inhibitor of several tyrosine protein kinases (VEGFR and PDGFR) and Raf kinases (more avidly C-Raf than B-Raf).[16][17] Sorafenib also inhibits some intracellular serine/threonine kinases (e.g. C-Raf, wild-type B-Raf and mutant B-Raf).[10] Sorafenib treatment induces autophagy,[18] which may suppress tumor growth. However, autophagy can also cause drug resistance.[19]

History

Renal cancer

Sorafenib was approved by the U.S. Food and Drug Administration (FDA) in December 2005,[20] and received European Commission marketing authorization in July 2006,[21] both for use in the treatment of advanced renal cancer.

Liver cancer

The European Commission granted marketing authorization to the drug for the treatment of patients with hepatocellular carcinoma(HCC), the most common form of liver cancer, in October 2007,[22] and FDA approval for this indication followed in November 2007.[23]

In November 2009, the UK’s National Institute of Clinical Excellence declined to approve the drug for use within the NHS in England, Wales and Northern Ireland, stating that its effectiveness (increasing survival in primary liver cancer by 6 months) did not justify its high price, at up to £3000 per patient per month.[24] In Scotland the drug had already been refused authorization by the Scottish Medicines Consortium for use within NHS Scotland, for the same reason.[24]

In March 2012, the Indian Patent Office granted a domestic company, Natco Pharma, a license to manufacture generic Sorafenib, bringing its price down by 97%. Bayer sells a month’s supply, 120 tablets, of Nexavar forINR280000 (US$4,700). Natco Pharma will sell 120 tablets for INR8800 (US$150), while still paying a 6% royalty to Bayer.[25][26] Under Indian Patents Act, 2005 and the World Trade Organisation TRIPS Agreement, the government can issue a compulsory license when a drug is not available at an affordable price.[27]

Thyroid Cancer

As of November 22, 2013, sorafenib has been approved by the FDA for the treatment of locally recurrent or metastatic, progressive differentiated thyroid carcinoma (DTC) refractory to radioactive iodine treatment.[28]

Research

Lung

In some kinds of lung cancer (with squamous-cell histology) sorafenib administered in addition to paclitaxel and carboplatin may be detrimental to patients.[29]

Brain (Recurrent Glioblastoma)

There is a phase I/II study at the Mayo Clinic[30] of sorafenib and CCI-779 (temsirolimus) for recurrent glioblastoma.

Desmoid Tumor (Aggressive Fibromatosis)

A study performed in 2011 showed that Sorafenib is active against Aggressive fibromatosis. This study is being used as justification for using Sorafenib as an initial course of treatment in some patients with Aggressive fibromatosis.[31]

Nexavar Controversy

In January 2014, Bayer’s CEO stated that Nexavar was developed for “western patients who [could] afford it”. At the prevailing prices, a kidney cancer patient would pay $96,000 (£58,000) for a year’s course of the Bayer-made drug. However, the cost of the Indian version of the generic drug would be around $2,800 (£1,700).[32]

Notes

  1. Low blood phosphate levels
  2. Bleeding; including serious bleeds such as intracranial and intrapulmonary bleeds
  3. High blood pressure
  4. Including abdominal pain, headache, tumour pain, etc.
  5. Considered a low (~10-30%) risk chemotherapeutic agent for causing emesis)
  6. Low level of white blood cells in the blood
  7. Low level of neutrophils in the blood
  8. Low level of red blood cells in the blood
  9. Low level of plasma cells in the blood
  10. Low blood calcium
  11. Low blood potassium
  12. Hearing ringing in the ears
  13. Heart attack
  14. Lack of blood supply for the heart muscle
  15. Mouth swelling, also dry mouth and glossodynia
  16. Indigestion
  17. Not being able to swallow
  18. Sore joints
  19. Muscle aches
  20. Kidney failure
  21. Excreting protein [usually plasma proteins] in the urine. Not dangerous in itself but it is indicative kidney damage
  22. Including skin reactions and urticaria (hives)
  23. Underactive thyroid
  24. Overactive thyroid
  25. Low blood sodium
  26. Runny nose
  27. Pneumonitis, radiation pneumonitis, acute respiratory distress, etc.
  28. Swelling of the pancreas
  29. Swelling of the stomach
  30. Formation of a hole in the gastrointestinal tract, leading to potentially fatal bleeds
  31. Yellowing of the skin and eyes due to a failure of the liver to adequately cope with the amount of bilirubin produced by the day-to-day actions of the body
  32. Swelling of the gallbladder
  33. Swelling of the bile duct
  34. A potentially fatal skin reaction
  35. A fairly benign form of skin cancer
  36. A potentially fatal abnormality in the electrical activity of the heart
  37. Swelling of the skin and mucous membranes
  38. A potentially fatal allergic reaction
  39. Swelling of the liver
  40. A potentially fatal skin reaction
  41. A potentially fatal skin reaction
  42. The rapid breakdown of muscle tissue leading to the build-up of myoglobin in the blood and resulting in damage to the kidneys

 

 

Sorafenib
Sorafenib2DACS.svg
Sorafenib3Dan.gif
Systematic (IUPAC) name
4-[4-[[4-chloro-3-(trifluoromethyl)phenyl]carbamoylamino]
phenoxy]-N-methyl-pyridine-2-carboxamide
Clinical data
Trade names Nexavar
AHFS/Drugs.com monograph
MedlinePlus a607051
Licence data EMA:Link, US FDA:link
Pregnancy cat. D (AU) D (US)
Legal status Prescription Only (S4) (AU) -only (CA) POM (UK) -only (US)
Routes Oral
Pharmacokinetic data
Bioavailability 38–49%
Protein binding 99.5%
Metabolism Hepatic oxidation and glucuronidation (CYP3A4 & UGT1A9-mediated)
Half-life 25–48 hours
Excretion Faeces (77%) and urine (19%)
Identifiers
CAS number 284461-73-0 Yes
ATC code L01XE05
PubChem CID 216239
DrugBank DB00398
ChemSpider 187440 Yes
UNII 9ZOQ3TZI87 Yes
KEGG D08524 Yes
ChEBI CHEBI:50924 Yes
ChEMBL CHEMBL1336 Yes
Synonyms Nexavar
Sorafenib tosylate
PDB ligand ID BAX (PDBe, RCSB PDB)
Chemical data
Formula C21H16ClF3N4O3 
Mol. mass 464.825 g/mol

 

4-(4-{3-[4-chloro-3-(trifluoromethyl)phenyl]ureido}phenoxy)-Λ/2-methylpyridine-2- carboxamide is commonly known as sorafenib (I). Sorafenib is prepared as its tosylate salt. Sorafenib blocks the enzyme RAF kinase, a critical component of the RAF/MEK/ERK signaling pathway that controls cell division and proliferation; in addition, sorafenib inhibits the VEGFR-2/PDGFR-beta signaling cascade, thereby blocking tumor angiogenesis.

Sorafenib, marketed as Nexavar by Bayer, is a drug approved for the treatment of advanced renal cell carcinoma (primary kidney cancer). It has also received “Fast Track” designation by the FDA for the treatment of advanced hepatocellular carcinoma (primary liver cancer). It is a small molecular inhibitor of Raf kinase, PDGF (platelet-derived growth factor), VEGF receptor 2 & 3 kinases and c Kit the receptor for Stem cell factor.

 

Sorafenib and pharmaceutically acceptable salts thereof is disclosed in WO0042012. Sorafenib is also disclosed in WO0041698. Both these patents disclose processes for the preparation of sorafenib.

WO0042012 and WO0041698 describe the process as given in scheme I which comprises reacting picolinic acid (II) with thionyl chloride in dimethyl formamide (DMF) to form acid chloride salt (III). This salt is then reacted with methylamine dissolved in tetrahydrofuran (THF) to give carboxamide (IV). This carboxamide when further reacted with 4- aminophenol in anhydrous DMF and potassium tert-butoxide 4-(2-(N-methylcarbamoyl)-4- pyridyloxy)aniline (V) is formed. Subsequent reaction of this aniline with 4-chloro-3- (trifluoromethyl) phenyl isocyanate (Vl) in methylene chloride yields sorafenib (I). The reaction is represented by Scheme I as given below.

Scheme I

 

Picolini

Sorafenib (I)

WO2006034796 also discloses a process for the preparation of sorafenib and its tosylate salt. The process comprises reacting 2-picolinic acid (II) with thionyl chloride in a solvent inert toward thionyl chloride without using dimethyl formamide to form acid chloride salt (III). This acid salt on further reaction with aqueous solution methylamine or gaseous methylamine gives compound (IV). Compound (IV) is then reacted with 4-aminophenol with addition of a carbonate salt in the presence of a base to yield compound (V).

Compound (V) can also be obtained by reacting compound (IV) with 4-aminophenol in the presence of water with addition of a phase transfer catalyst. Compound (V) when reacted with 4-chloro-3-(trifluoromethyl) phenyl isocyanate (Vl) in a non-chlorinated organic solvent, inert towards isocyanate gives sorafenib (I). Sorafenib by admixing with p- toluenesulfonic acid in a polar solvent gives sorafenib tosylate (VII). The reaction is represented by Scheme Il as given below.

Scheme Il

P

A key step in the synthesis of sorafenib is the formation of the urea bond. The processes disclosed in the prior art involve reactions of an isocyanate with an amine. These isocyanate compounds though commercially available are very expensive. Further synthesis of isocyanate is very difficult which requires careful and skillful handling of reagents.

Isocyanate is prepared by reaction of an amine with phosgene or a phosgene equivalent, such as bis(trichloromethyl) carbonate (triphosgene) or trichloromethyl chloroformate (diphosgene). Isocyanate can also be prepared by using a hazardous reagent such as an azide. Also, the process for preparation of an isocyanate requires harsh reaction conditions such as strong acid, higher temperature etc. Further, this isocyanate is reacted with an amine to give urea.

Reactions of isocyanates suffer from one or more disadvantages. For example phosgene or phosgene equivalents are hazardous and dangerous to use and handle on a large scale. These reagents are also not environment friendly. Isocyanates themselves are thermally unstable compounds and undergo decomposition on storage and they are incompatible with a number of organic compounds. Thus, the use of isocyanate is not well suited for industrial scale application.

 

Sorafenib and its pharmaceutically acceptable salts and solvates are reported for the first time in WO0041698 (corresponding US 03139605) by Bayer. In the literature only one route is disclosed for the preparation of sorafenib. According to this route (Scheme-I), picolinic acid of formula III is reacted with thionyl chloride to give the 4-chloro derivative which on treatment

 

VII

Scheme-I with methanol gave the methyl ester of formula V. Compound of formula V is reacted with methylamine to get the corresponding amide of formula VL Compound of formula VI is reacted with 4-aminophenol to get the ether derivative of formula VII. Compound of formula VII is reacted with 4-chloro-3-trifluoromethylphenylisocyante to get sorafenib base of formula I. Overall yield of sorafenib in this process is 10% from commercially available 2-picolinic acid of formula II. Main drawback in this process is chromatographic purification of the intermediates involved in the process and low yield at every step.

Donald Bankston’s (Org. Proc. Res. Dev., 2002, 6, 777-781) development of an improved synthesis of the above basic route afforded sorafenib in an overall yield of 63% without involving any chromatographic purification. Process improvements like reduction of time in thionyl chloride reaction; avoid the isolation of intermediates of formulae IV and V5 reduction of base quantity in p-aminophenol reaction, etc lead to the simplification of process and improvement in yield of final compound of formula I.

Above mentioned improvements could not reduce the number of steps in making sorafenib of formula-I. In the first step all the raw materials are charged and heated to target temperature (72°C). Such a process on commercial scale will lead to sudden evolution of gas emissions such as sulfur dioxide and hydrogen chloride. Also, in the aminophenol reaction two bases (potassium carbonate and potassium t-butoxide) were used in large excess to accomplish the required transformation.

A scalable process for the preparation of sorafenib is disclosed in WO2006034796. In this process also above mentioned chemistry is used in making sorafenib of formula I. In the first step, catalytic quantity. of DMF used in the prior art process is replaced with reagents like hydrogen bromide, thionyl bromide and sodium bromide. Yield of required product remained same without any advantages from newly introduced corrosive reagents. Process improvements like change of solvents, reagents, etc were applied in subsequent steps making the process scalable. Overall yield of sorafenib is increased to 74% from the prior art 63% yield. Purity of sorafenib is only 95% and was obtained as light brown colored solid.

Main drawbacks in this process are production of low quality sorafenib and requirement of corrosive and difficult to handle reagents such as thionyl bromide and hydrogen bromide. Also, there is no major improvement in the yield of sorafenib.

 

Sorafenib tosylate ( Brand name: Nexavar ®, BAY 43-9006 other name, Chinese name: Nexavar, sorafenib, Leisha Wa) was Approved by U.S. FDA for the treatment of advanced kidney cancer in 2005 and liver cancer in 2007 .

Sorafenib, co-Developed and co-marketed by Germany-based Bayer AG and South San Francisco-based Onyx Pharmaceuticals , is an Oral Multi-kinase inhibitor for VEGFR1, VEGFR2, VEGFR3, PDGFRbeta, Kit, RET and Raf-1.

In March 2012 Indian drugmaker Natco Pharma received the first compulsory license ever from Indian Patent Office to make a generic Version of Bayer’s Nexavar despite the FACT that Nexavar is still on Patent. This Decision was based on the Bayer Drug being too expensive to most patients. The Nexavar price is expected to drop from $ 5,500 per person each month to $ 175, a 97 percent decline. The drug generated $ 934 million in global sales in 2010, according to India’s Patent Office.

Sorafenib tosylate

Chemical Name: 4-Methyl-3-((4 – (3-pyridinyl)-2-pyrimidinyl) amino)-N-(5 – (4-methyl-1H-imidazol-1-yl) -3 – (trifluoromethyl) phenyl) benzamide monomethanesulfonate, Sorafenib tosylate

CAS Number 475207-59-1 (Sorafenib tosylate ) , 284461-73-0 (Sorafenib)

References for the Preparation of Sorafenib References

1) Bernd Riedl, Jacques Dumas, Uday Khire, Timothy B. Lowinger, William J. Scott, Roger A. Smith, Jill E. Wood, Mary-Katherine Monahan, Reina Natero, Joel Renick, Robert N. Sibley; Omega-carboxyaryl Substituted diphenyl Ureas as RAF kinase inhibitors ; U.S. Patent numberUS7235576
2) Rossetto, Pierluigi; Macdonald, Peter, Lindsay; Canavesi, Augusto; Process for preparation of sorafenib and Intermediates thereof , PCT Int. Appl., WO2009111061
3) Lögers, Michael; gehring, Reinhold; Kuhn, Oliver; Matthäus, Mike; Mohrs, Klaus; müller-gliemann, Matthias; Stiehl, jürgen; berwe, Mathias; Lenz, Jana; Heilmann, Werner; Process for the preparation of 4 – {4 – [( {[4-chloro-3-(TRIFLUOROMETHYL) phenyl] amino} carbonyl) amino] phenoxy}-N-methylpyridine-2-carboxamide , PCT Int. Appl., WO2006034796
4) Shikai Xiang, Liu Qingwei, Xieyou Rong, sorafenib preparation methods, invention patent application Publication No. CN102311384 , Application No. CN201010212039
5) Zhao multiply there, Chenlin Jie, Xu Xu, MASS MEDIA Ji Yafei; sorafenib tosylate synthesis ,Chinese Journal of Pharmaceuticals , 2007 (9): 614 -616

Preparation of Sorafenib Tosylate (Nexavar) Nexavar, sorafenib Preparation of methyl sulfonate

Sorafenib (Sorafenib) chemical name 4 – {4 – [({[4 - chloro -3 - (trifluoromethyl) phenyl] amino} carbonyl) amino] phenoxy}-N-methyl-pyridine -2 – formamide by Bayer (Bayer) research and development, in 2005 the U.S. Food and Drug Administration (FDA) approval. Trade name Nexavar (Nexavar). This product is an oral multi-kinase inhibitor, for the treatment of liver cancer and kidney cancer.

Indian Patent Office in March this year for Bayer’s Nexavar in liver and kidney cancer drugs (Nexavar) has released a landmark “compulsory licensing” (compulsory license). Indian Patent Office that due to the high price Nexavar in India, the vast majority of patients can not afford the drug locally, thus requiring local Indian pharmaceutical company Natco cheap Nexavar sales. Nexavar in 2017 before patent expiry, Natco pay only Bayer’s pharmaceutical sales to 6% royalties. The move to make Nexavar patent drug prices, the supply price from $ 5,500 per month dropped to $ 175, the price reduction of 97%. Compulsory licensing in India for other life-saving drugs and patent medicines overpriced open a road, the Indian Patent Office through this decision made it clear that the patent monopoly does not guarantee that the price is too high. Nexavar is a fight against advanced renal cell carcinoma, liver cancer cure. In China, a box of 60 capsules of Nexavar price of more than 25,000 yuan. In accordance with the recommended dose, which barely enough to eat half of patients with advanced cancer. In September this year India a patent court rejected Bayer Group in India cheap drugmaker emergency appeal. Indian government to refuse patent medicine overpriced undo “compulsory licensing rules,” allowing the production of generic drugs Nexavar.

Sorafenat by Natco – Sorafenib – Nexavar – India natco Nexavar

Chemical Synthesis of  Sorafenib Tosylate (Nexavar)

Sorafenib tosylate (brand name :Nexavar®, other name BAY 43-9006, was approved by US FDA for the treatment of kidney cancer in 2005 and advanced liver cancer in 2007.

Chemical Synthesis of  Sorafenib Tosylate (Nexavar)  多吉美, 索拉非尼的化学合成

US Patent US7235576, WO2006034796, WO2009111061 and Faming Zhuanli Shenqing(CN102311384) disclosed processes for preparation of sorafenib base and its salt sorafenib tosylate.

References

1)Bernd Riedl, Jacques Dumas, Uday Khire, Timothy B. Lowinger, William J. Scott, Roger A. Smith, Jill E. Wood, Mary-Katherine Monahan, Reina Natero, Joel Renick, Robert N. Sibley; Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors; US patent numberUS7235576
2)Rossetto, pierluigi; Macdonald, peter, lindsay; Canavesi, augusto; Process for preparation of sorafenib and intermediates thereof, PCT Int. Appl., WO2009111061
3)Lögers, michael; gehring, reinhold; kuhn, oliver; matthäus, mike; mohrs, klaus; müller-gliemann, matthias; stiehl, jürgen; berwe, mathias; lenz, jana; heilmann, werner; Process for the preparation of 4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-n-methylpyridine-2-carboxamide, PCT Int. Appl., WO2006034796CN102311384, CN201010212039

Full Experimental Details for the preparation of Sorafenib Tosylate (Nexavar) 

Synthesis of 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline.

A solution of 4-aminophenol (9.60 g, 88.0 mmol) in anh. DMF (150 mL) was treated with potassium tert-butoxide (10.29 g, 91.7 mmol), and the reddish-brown mixture was stirred at room temp. for 2 h. The contents were treated with 4-chloro- N -methyl-2-pyridinecarboxamide (15.0 g, 87.9mmol) and K2CO3 (6.50 g, 47.0 mmol) and then heated at 80°C. for 8 h. The mixture was cooled to room temp. and separated between EtOAc (500 mL) and a saturated NaCl solution (500 mL). The aqueous phase was back-extracted with EtOAc (300 mL). The combined organic layers were washed with a saturated NaCl solution (4×1000 mL), dried (Na2SO4) and concentrated under reduced pressure. The resulting solids were dried under reduced pressure at 35°C. for 3 h to afford 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline as a light-brown solid 17.9 g, 84%):. 1H-NMR (DMSO-d6) δ 2.77 (d, J = 4.8 Hz, 3H), 5.17 (br s, 2H), 6.64, 6.86 (AA’BB’ quartet, J = 8.4 Hz, 4H), 7.06 (dd, J = 5.5, 2.5 Hz, 1H), 7.33 (d, J = 2.5 Hz, 1H), 8.44 (d, J = 5.5 Hz; 1H), 8.73 (br d, 1H); HPLC ES-MS m/z 244 ((M+H)+).

Synthesis of 4-{4-[({[4-Chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-N-methylpyridine-2-carboxamide (sorafenib)

4-(4-Aminophenoxy)-N-methyl-2-pyridinecarboxamide (52.3 kg, 215 mol) is suspended in ethyl acetate (146 kg) and the suspension is heated to approx. 40° C. 4-Chloro-3-trifluoromethylphenyl isocyanate (50 kg, 226 mol), dissolved in ethyl acetate (58 kg), is then added to such a degree that the temperature is kept below 60° C. After cooling to 20° C. within 1 h, the mixture is stirred for a further 30 min and the product is filtered off. After washing with ethyl acetate (30 kg), the product is dried under reduced pressure (50° C., 80 mbar). 93 kg (93% of theory) of the title compound are obtained as colorless to slightly brownish crystals. m.p. 206-208° C. 1H-NMR (DMSO-d6, 500 MHz): δ =2.79 (d, J=4.4 Hz, 3H, NCH3); 7.16 (dd, J=2.5, 5.6 Hz, 1H, 5-H); 7.18 (d, J=8.8 Hz, 2H, 3′-H, 5′-H); 7.38 (d, J=2.4 Hz, 1H, 3-H); 7.60-7.68 (m, 4H, 2′-H, 6′-H, 5″-H, 6″-H); 8.13 (d, J=1.9 Hz, 1H, 2″-H); 8.51 (d, J=5.6 Hz, 1H, 6-H); 8.81 (d, J=4.5 Hz, 1H, NHCH3); 9.05 (br. s, 1H, NHCO); 9.25 (br. s, 1H, NHCO) MS (ESI, CH3CN/H2O): m/e=465 [M+H]+.

Synthesis of Sorafenib Tosylate (Nexavar)

4-(4-{3-[4-chloro-3-(trifluoromethyl)phenyl]ureido}phenoxy)-N2-methylpyridine-2-carboxamide (sorafenib) (50g, 0.1076 mol) is suspended in ethyl acetate (500 g) and water (10g). The mixture is heated to 69°C within 0.5 h, and a filtered solution of p-toluenesulfonic acid monohydrate (3.26 g, 0.017 mol) in a mixture of water (0.65 g) and ethyl acetate (7.2 g) is added. After filtration a filtered solution of p-toluenesulfonic acid monohydrate (22g, 0.11 mol) in a mixture of ethyl acetate (48 g) and water (4.34 g) is added. The mixture is cooled to 23°C within 2 h. The product is filtered off, washed twice with ethyl acetate (92.5 g each time) and dried under reduced pressure. The sorafenib tosylate (65.5 g, 96% of theory) is obtained as colorless to slightly brownish crystals.

…………………..

http://www.google.com/patents/EP2195286A2?cl=en

Example 22: Synthesis of Sorafenib

Phenyl 4-chloro-3-(trifluoromethyl)phenylcarbamate (100 g, 0.3174 mol) and 4-(4- aminophenoxy)-N-methylpicolinamide (77.14 g, 0.3174 mol) were dissolved in N1N- dimethyl formamide (300 ml) to obtain a clear reaction mass. The reaction mass was agitated at 40-450C for 2-3 hours, cooled to room temperature and diluted with ethyl acetate (1000 ml). The organic layer was washed with water (250 ml) followed by 1N HCI (250ml) and finally with brine (250 ml). The organic layer was separated, dried over sodium sulfate and degassed to obtain solid. This solid was stripped with ethyl acetate and finally slurried in ethyl acetate (1000 ml) at room temperature. It was then filtered and vacuum dried to give (118 g) of 4-(4-(3-(4-chloro-3- (trifluoromethyl)phenyl)ureido)phenoxy)-N-methylpicolinamide (sorafenib base).

Example 23: Synthesis of 1-(4-chloro-3-(trifluoromethyl)phenyl)urea (Compound 4)

Sodium cyanate (1.7 g, 0.02mol) was dissolved in water (17ml) at room temperature to obtain a clear solution. This solution was then charged drop wise to the clear solution of 3- trifluoromethyl-4-chloroaniline (5 g, 0.025 mol) in acetic acid (25 ml) at 40°C-45°C within 1- 2 hours. The reaction mass was agitated for whole day and cooled gradually to room temperature. The obtained solid was filtered washed with water and vacuum dried at 500C to afford the desired product (5.8 g) i.e. 1-(4-chloro-3-(trifluoromethyl)phenyl)urea.

Example 24: Synthesis of Sorafenib

1-(4-chloro-3-(trifluoromethyl) phenyl)urea (15 g, 0.0628 mol), 1 ,8- diazabicyclo[5.4.0]undec-7-ene (11.75 ml, 0.078 mol) and 4-(4-aminophenoxy)-N- methylpicolinamide (15.27 g, 0.0628 mol) were mixed with dimethyl sulfoxide (45 ml) and the reaction mass was then heated to 110-1200C for 12-18 hours. The reaction mass was cooled to room temperature and quenched in water (250 ml). The quenched mass was extracted repeatedly with ethyl acetate and the combined ethyl acetate layer was then back washed with water. It was dried over sodium sulfate and evaporated under vacuum to obtain solid. The obtained solid was slurried in acetonitrile (150 ml) at ambient temperature and filtered to give 4-(4-(3-(4-chloro-3-(trifluoromethyl) phenyl) ureido) phenoxy)-N-methylpicolinamide (sorafenib base) (17.5 g).

………………………..

http://www.google.com/patents/WO2009054004A2?cl=en

http://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2009054004A2&KC=A2&FT=D&date=20090430&DB=EPODOC&locale=en_gb

Figure imgf000006_0002

EXAMPLES

Example 1

Preparation of l-(4-chloro-3-(trifluoromethyl)phenyI)-3-(4-hydroxyphenyl)urea Into a 250 ml, four-necked RB flask was charged 1O g of 4-aminophenol and 100 ml of toluene. A solution of 4-chloro-3-(trifluoromethyl)phenyl isocyante (20.4 g) in toluene (50 ml) was added to the reaction mass at 25-300C. The reaction mass was stirred at room temperature for 16 h. The reaction mass was filtered and washed the. solid with 50 ml of toluene. The wet material was dried in the oven at 50-60°C to get 29.8 g of title compound as white solid. M.P. is 218-222°C. IR (KBr): 3306, 1673, 1625, 1590, 1560, 1517, 1482, 1435, 1404, 1328, 1261, 1182, 1160, 1146, 1125, 1095, 1032, 884, 849, 832, 812, 766, 746, 724, 683, 539 and 434 cm“1.

Example 2 Preparation of sorafenib tosylate

Into a 100 ml, three-necked RB flask was charged 2.0 g of l-(4-chloro-3- (trifluoromethyl)-phenyl)-3-(4-hydroxyphenyl)urea and 10 ml of DMF. Potassium tert- butoxide (2.3 g) was added to the reaction mass and stirred for 45 min at RT. 4-Chlro-N- methylpicolinamide (1.14 g) and potassium carbonate (0.42 g) were added to the reaction mass and heated to 80°C. The reaction mass was maintained at 80-85°C for 8 h and cooled to 30°C. The reaction mass was poured into water and extracted with ethyl acetate. Ethyl acetate layer was washed with water, brine and dried over sodium sulphate. Solvent was distilled of under reduced pressure.

The crude compound (4.7 g) was dissolved in 10 ml of IPA and added 1.9 g of p- toluenesulfonic acid. The reaction mass was stirred at RT for 15 h and filtered. The wet solid was washed with 10 ml of IPA and dried at 50-60°C to get 3.4 g of title compound as off-white crystalline solid.

 

…………………..

A Scaleable Synthesis of BAY 43-9006:  A Potent Raf Kinase Inhibitor for the Treatment of Cancer

Bayer Research Center, Pharmaceutical Division, 400 Morgan Lane, West Haven, Connecticut 06516, U.S.A.
Org. Proc. Res. Dev., 2002, 6 (6), pp 777–781
DOI: 10.1021/op020205n

http://pubs.acs.org/doi/abs/10.1021/op020205n

Abstract Image

Urea 3 (BAY 43-9006), a potent Raf kinase inhibitor, was prepared in four steps with an overall yield of 63%. Significant process research enabled isolation of each intermediate and target without chromatographic purification, and overall yield increases >50% were observed compared to those from previous methods. This report focuses on improved synthetic strategies for production of scaled quantities of 3 for preclinical, toxicological studies. These improvements may be useful to assemble other urea targets as potential therapeutic agents to combat cancer.

Synthesis of N-[4-Chloro-3-(trifluoromethyl)phenyl]({4-[2-(N-methyl-carbamoyl)(4-pyridyloxy)]phenyl}amino)carboxamide (3, BAY 43-9006).
A suspension of 9 (67.00 g, 275.43 mmol) in methylene chloride ———————-DELETE………………………………The solids were washed with methylene chloride (2 × 50 mL) and dried under vacuum for 4 h at 35 °C to afford 3 (118.19 g, 254.27 mmol, 92%) as an off-white solid.
Mp = 210−212 °C.
1H NMR (DMSO-d6, 300 MHz):
δ 2.77 (d, J = 4.8 Hz, 3H, −NHCH3);
7.16 (m, 3H, aromatic);
7.37 (d, J = 2.5 Hz, 1H, aromatic);
7.62 (m, 4H, aromatic);
8.11 (d, J = 2.5 Hz, 1H, aromatic);
8.49 (d, J = 5.5 Hz, 1H, aromatic);
8.77 (br d, 1H, −NHCH3);
8.99 (s, 1H, −NHCO−); 9.21 (s, 1H, −NHCO−).
Mass spectrum (HPLC/ES):  m/e = 465 (M + 1).
Anal. Calcd for C21H16N4ClF3O3:  C, 54.26; H, 3.47; N, 12.05. Found:  C, 54.11; H, 3.49; N, 12.03.
HPLC (ELS) purity >98%:  tR = 3.5 min.
Synthesis of N-[4-Chloro-3-(trifluoromethyl)phenyl]({4-[2-(N-methyl-carbamoyl)(4-pyridyloxy)]phenyl}amino)carboxamide (3, BAY 43-9006):  Use of CDI.
A solution of 11 (1.25 g, 6.39 mmol) in methylene chloride———————-DELETED……………………. high vacuum at 35 °C for 2 h to afford 3 (2.55 g, 5.49 mmol, 91%) as a white solid. Proton NMR and mass-spectral data were consistent with structure.
Anal. Calcd for C21H16N4ClF3O3:   C, 54.26; H, 3.47; N, 12.05; Cl, 7.63. Found:  C, 54.24; H, 3.31; N, 12.30; Cl, 7.84.
Mp (differential scanning calorimetry, 10 °C/min):  205.6 °C;
no polymorphs observed.

References

  1. “FDA Approves Nexavar for Patients with Inoperable Liver Cancer” (Press release). FDA. November 19, 2007. Retrieved November 10, 2012.
  2. “Nexavar (sorafenib) dosing, indications, interactions, adverse effects, and more”. Medscape Reference. WebMD. Retrieved 26 December 2013.
  3. “NEXAVAR (sorafenib) tablet, film coated [Bayer HealthCare Pharmaceuticals Inc.]“. DailyMed. Bayer HealthCare Pharmaceuticals Inc. November 2013. Retrieved 26 December 2013.
  4. “Nexavar 200mg film-coated tablets – Summary of Product Characteristics (SPC) – (eMC)”. electronic Medicines Compendium. Bayer plc. 27 March 2013. Retrieved 26 December 2013.
  5. “PRODUCT INFORMATION NEXAVAR® (sorafenib tosylate)” (PDF). TGA eBusiness Services. Bayer Australia Ltd. 12 December 2012. Retrieved 26 December 2013.
  6. Escudier, B; Eisen, T; Stadler, WM; Szczylik, C; Oudard, S; Siebels, M; Negrier, S; Chevreau, C; Solska, E; Desai, AA; Rolland, F; Demkow, T; Hutson, TE; Gore, M; Freeman, S; Schwartz, B; Shan, M; Simantov, R; Bukowski, RM (January 2007). “Sorafenib in advanced clear-cell renal-cell carcinoma”. New England Journal of Medicine 356 (2): 125–34. doi:10.1056/NEJMoa060655. PMID 17215530.
  7. Walid, MS; Johnston, KW (October 2009). “Successful treatment of a brain-metastasized renal cell carcinoma”. German Medical Science 7: Doc28. doi:10.3205/000087. PMC 2775194. PMID 19911072.
  8. “Pharmaceutical Benefits Scheme (PBS) -SORAFENIB”. Pharmaceutical Benefits Scheme. Australian Government Department of Health. Retrieved 27 December 2013.
  9. Llovet, et al. (2008). “Sorafenib in Advanced Hepatocellular Carcinoma” (PDF). New England Journal of Medicine 359 (4): 378–90.
  10. Keating GM, Santoro A (2009). “Sorafenib: a review of its use in advanced hepatocellular carcinoma”. Drugs 69 (2): 223–40. doi:10.2165/00003495-200969020-00006. PMID 19228077.
  11. Pawlik TM, Reyes DK, Cosgrove D, Kamel IR, Bhagat N, Geschwind JF (October 2011). “Phase II trial of sorafenib combined with concurrent transarterial chemoembolization with drug-eluting beads for hepatocellular carcinoma”. J. Clin. Oncol. 29 (30): 3960–7. doi:10.1200/JCO.2011.37.1021. PMID 21911714.
  12. “Phase 3 Trial of Nexavar in Patients With Non-Responsive Thyroid Cancer”[dead link]
  13. [1]
  14. “Chemotherapy-Induced Nausea and Vomiting Treatment & Management”. Medscape Reference. WebMD. 3 July 2012. Retrieved 26 December 2013.
  15. Hagopian, Benjamin (August 2010). “Unusually Severe Bullous Skin Reaction to Sorafenib: A Case Report”. Journal of Medical Cases 1 (1): 1–3. doi:10.4021/jmc112e. Retrieved 11 February 2014.
  16. Smalley KS, Xiao M, Villanueva J, Nguyen TK, Flaherty KT, Letrero R, Van Belle P, Elder DE, Wang Y, Nathanson KL, Herlyn M (January 2009). “CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations”. Oncogene 28 (1): 85–94. doi:10.1038/onc.2008.362. PMC 2898184. PMID 18794803.
  17. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (October 2008). “Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling”. Mol. Cancer Ther. 7 (10): 3129–40. doi:10.1158/1535-7163.MCT-08-0013. PMID 18852116.
  18. Zhang Y (Jan 2014). “Screening of kinase inhibitors targeting BRAF for regulating autophagy based on kinase pathways.”. J Mol Med Rep 9 (1): 83–90. PMID 24213221.
  19. Gauthier A (Feb 2013). “Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update..”. Hepatol Res 43 (2): 147–154. doi:10.1111/j.1872-034x.2012.01113.x. PMID 23145926.
  20. FDA Approval letter for use of sorafenib in advanced renal cancer
  21. European Commission – Enterprise and industry. Nexavar. Retrieved April 24, 2007.
  22. “Nexavar® (Sorafenib) Approved for Hepatocellular Carcinoma in Europe” (Press release). Bayer HealthCare Pharmaceuticals and Onyx Pharmaceuticals. October 30, 2007. Retrieved November 10, 2012.
  23. FDA Approval letter for use of sorafenib in inoperable hepatocellular carcinoma
  24. “Liver drug ‘too expensive. BBC News. November 19, 2009. Retrieved November 10, 2012.
  25. http://www.ipindia.nic.in/ipoNew/compulsory_License_12032012.pdf
  26. “Seven days: 9–15 March 2012″. Nature 483 (7389): 250–1. 2012. doi:10.1038/483250a.
  27. “India Patents (Amendment) Act, 2005″. WIPO. Retrieved 16 January 2013.
  28. [2]
  29. “Addition of Sorafenib May Be Detrimental in Some Lung Cancer Patients”
  30. ClinicalTrials.gov NCT00329719 Sorafenib and Temsirolimus in Treating Patients With Recurrent Glioblastoma
  31. “Activity of sorafenib against desmoid tumor/deep fibromatosis”
  32. We didn’t make this medicine for Indians… we made it for western patients who can afford it. Daily Mail Reporter. 24 Jan 2014.

External links

 

 
Reference
1 * D. BANKSTON ET AL.: “A Scalable Synthesis of BAY 43-9006: A Potent Raf Kinase Inhibitor for the Treatment of Cancer” ORGANIC PROCESS RESEARCH & DEVELOPMENT, vol. 6, no. 6, 2002, pages 777-781, XP002523918 cited in the application
2 * PAN W ET AL: “Pyrimido-oxazepine as a versatile template for the development of inhibitors of specific kinases” BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, PERGAMON, ELSEVIER SCIENCE, GB, vol. 15, no. 24, 15 December 2005 (2005-12-15), pages 5474-5477, XP025314229 ISSN: 0960-894X [retrieved on 2005-12-15]

 

Citing Patent Filing date Publication date Applicant Title
WO2011036647A1 Sep 24, 2010 Mar 31, 2011 Ranbaxy Laboratories Limited Process for the preparation of sorafenib tosylate
WO2011036648A1 Sep 24, 2010 Mar 31, 2011 Ranbaxy Laboratories Limited Polymorphs of sorafenib acid addition salts
WO2011058522A1 Nov 12, 2010 May 19, 2011 Ranbaxy Laboratories Limited Sorafenib ethylsulfonate salt, process for preparation and use
WO2011092663A2 Jan 28, 2011 Aug 4, 2011 Ranbaxy Laboratories Limited 4-(4-{3-[4-chloro-3-(trifluoromethyl)phenyl]ureido}phenoxy)-n2-methylpyridine-2-carboxamide dimethyl sulphoxide solvate
WO2011113367A1 * Mar 17, 2011 Sep 22, 2011 Suzhou Zelgen Biopharmaceutical Co., Ltd. Method and process for preparation and production of deuterated ω-diphenylurea
US8552197 Nov 12, 2010 Oct 8, 2013 Ranbaxy Laboratories Limited Sorafenib ethylsulfonate salt, process for preparation and use
US8604208 Sep 24, 2010 Dec 10, 2013 Ranbaxy Laboratories Limited Polymorphs of sorafenib acid addition salts
US8609854 Sep 24, 2010 Dec 17, 2013 Ranbaxy Laboratories Limited Process for the preparation of sorafenib tosylate
US8618305 Jan 28, 2011 Dec 31, 2013 Ranbaxy Laboratories Limited Sorafenib dimethyl sulphoxide solvate
US8669369 Mar 17, 2011 Mar 11, 2014 Suzhou Zelgen Biopharmaceutical Co., Ltd. Method and process for preparation and production of deuterated Ω-diphenylurea

Filed under: Japan marketing, Japan pipeline Tagged: BAY 43-9006, Bayer HealthCare, hepatocellular carcinoma, JAPAN, kidney cancer, LIVER CANCER, MHLW, Nexavar, renal cell carcinoma, Sorafenib

Minisci reactions: Versatile CH-functionalizations for medicinal chemists

$
0
0

Minisci reactions: Versatile CH-functionalizations for medicinal chemists

Matthew A. J. Duncton *
Renovis, Inc. (a wholly-owned subsidiary of Evotec AG), Two Corporate Drive, South San Francisco, CA 94080, United States. E-mail: mattduncton@yahoo.com; Tel: +1 917-345-3183

Received 24th May 2011 , Accepted 3rd July 2011

First published on the web 22nd August 2011

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e


The addition of a radical to a heteroaromatic base is commonly referred to as a Minsici reaction. Such reactions constitute a broad-set of selective CH-functionalization processes. This review describes some of the major applications of Minisci reactions and related processes to medicinal or biological chemistry, and highlights some potential developments within this area.


Introduction

The aim of this review is to summarize the use of Minisci reactions within medicinal chemistry, and to highlight some future opportunities to continue progression of this chemistry. As such, it is not an aim that detailed mechanistic information, or a comprehensive list of examples be described. For this, the reader is directed to excellent articles from Minisci, Harrowven and Bowman.1–3 Rather, the review is written to show that Minisci reactions are extremely valuable CH-functionalization processes within medicinal chemistry. However, their use has been somewhat under-utilized when compared with other well-known selective transformations (e.g. palladium-catalysed cross-couplings). Therefore, it is hoped that in the future, Minisci chemistry will continue to develop, such that the reactions become a staple-set of methods for medicinal and biological chemists alike.

To aid discussion, the review is divided in to several sections. First, some historical perspective is given. This is followed by a discussion of scope and limitations. The main-body of the review describes some specific examples of Minisci reactions and related processes, with a focus on their use within medicinal, or biological chemistry. Finally, brief mention is given to potential future applications, some of which may be beneficial in providing ‘high-content’ diverse libraries for screening.

 

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

http://pubs.rsc.org/en/content/articlehtml/2011/md/c1md00134e

 

…………………….

 

WIKI

The Minisci reaction is a named reaction in organic chemistry. It is a radical substitution to an aromatic compound, in particular to a heteroaromatic base, that introduces an alkyl group. The reaction was published about in 1971 by F. Minisci.[1] The aromatic compound is generally electron-deficient and with N-aromatic compounds the nitrogen atom is protonated.[2] A typical reaction is that between pyridine and pivalic acid to 2-tert-butylpyridine with silver nitrate, sulfuric acid and ammonium persulfate. The reaction resembles Friedel-Crafts alkylation but with opposite reactivity and selectivity.[3]

The Minisci reaction proceeds regioselectively and enables the introduction of a wide range of alkyl groups.[4] A side-reaction is acylation.[5] The ratio between alkylation and acylation depends on the substrate and the reaction conditions. Due to the simple raw materials and the simple reaction conditions the reaction has many applications in heterocyclic chemistry.[6][7]

Reaction between pyridine and pivalic acid to 2-tert-butylpyridine

Mechanism

A free radical is formed from the carboxylic acid in an oxidative decarboxylation with silver salts and an oxidizing agent. The oxidizing agent reoxidizes the silver salt. The radical then reacts with the aromatic compound. The ultimate product is formed by rearomatisation. The acylated product is formed from the acyl radical.[4][5]

Mechanism of the Minisci-Reaction

References

  1. F. Minisci, R. Bernardi, F. Bertini, R. Galli, M. Perchinummo: Nucleophilic character of alkyl radicals—VI : A new convenient selective alkylation of heteroaromatic bases, in: Tetrahedron 1971, 27, 3575–3579.
  2. Minisci reaction Jie Jack Li in Name Reactions 2009, 361-362, doi:10.1007/978-3-642-01053-8_163
  3. Strategic applications of named reactions in organic synthesis: background and detailed mechanisms László Kürti, Barbara Czakó 2005
  4. F. Fontana, F. Minisci, M. C. N. Barbosa, E. Vismara: Homolytic acylation of protonated pyridines and pyrazines with α-keto acids: the problem of monoacylation, in: J. Org. Chem. 1991, 56, 2866–2869; doi:10.1021/jo00008a050.
  5. M.-L. Bennasar, T. Roca, R. Griera, J. Bosch: Generation and Intermolecular Reactions of 2-Indolylacyl Radicals, in: Org. Lett. 2001, 3, 1697–1700; doi:10.1021/ol0100576.
  6. P. B. Palde, B. R. McNaughton, N. T. Ross, P. C. Gareiss, C. R. Mace, R. C. Spitale, B. L. Miller: Single-Step Synthesis of Functional Organic Receptors via a Tridirectional Minisci Reaction, in: Synthesis 2007, 15, 2287–2290; doi:10.1055/s-2007-983792.
  7. J. A. Joules, K. Mills: Heterocyclic Chemistry, 5. Auflage, S. 125–141, Blackwell Publishing, Chichester, 2010, ISBN 978-1-4051-9365-8.

Filed under: Anthony crasto, PROCESS Tagged: Anthony crasto, drugs, medicinal chemistry, Minisci reactions, organic chemistry, organic synthesis, PROCESS, world drug tracker
Viewing all 2878 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>