Quantcast
Channel: New Drug Approvals
Viewing all 2922 articles
Browse latest View live

Lilly’s diabetes drug peglispro outshines world’s most popular insulin

$
0
0
 Lilly's diabetes drug outshines world's most popular insulin
insulin peglispro
SYNONYMS macrogol 20000 pegylated insulin lispro: [28B-(6-N-{[ω-methoxypoly(oxyethylene)]carbonyl}-L-lysine), 29B-L-proline]human insulin
CAS 1200440-65-8
insulin peglispro
antidiabetic;

 

Lilly’s diabetes drug outshines world’s most popular insulin

World News | May 13, 2014

Late-stage clinical data has shown Lilly’s experimental diabetes drug Peglispro to be better at reducing blood sugar in patients with type II diabetes than Sanofi’s Lantus – the world’s most prescribed insulin.

The US drugmaker says it expects to file for approval of its basal insulin (BIL) by the first quarter of next year, after three Phase III studies showed it induced “a statistically superior reduction in HbA1c” compared with Lantus.

 

………….


Filed under: DIABETES Tagged: DIABETES, peglispro

Taltirelin Талтирелин for Treatment of Neurodegenerative Diseases,

$
0
0

Talitirelin.png

 

Taltirelin Талтирелин

N-{[(4S)-1-methyl-2,6-dioxohexahydropyrimidin-4-yl]carbonyl}-L-histidyl-L-prolinamide

(S)-1-Methyl-4,5-dihydroorotyl-L-histidyl-L-prolinamide
(S)-N-(1-Methyl-2,6-dioxohexahydropyrimidin-4-ylcarbonyl)-L-histidyl-L-prolinamide

launched 2000 by Mitsubishi Tanabe Pharma

 

 Tanabe Seiyaku Co., Ltd.

103300-74-9
201677-75-0

Taltirelin tetrahydrate, Taltirelin hydrate, 201677-75-0, TA 0910
Molecular Formula: C17H31N7O9   Molecular Weight: 477.46954

Taltirelin (marketed under the tradename Ceredist) is a thyrotropin-releasing hormone (TRH) analog, which mimics the physiological actions of TRH, but with a much longer half-life and duration of effects,[1] and little development of tolerance following prolonged dosing.[2] It has nootropic,[3] neuroprotective[4] and analgesic effects.[5]

Taltirelin is primarily being researched for the treatment of spinocerebellar ataxia; limited research has also been carried out with regard to other neurodegenerative disorders, e.g., spinal muscular atrophy.[6][7][8]

Taltirelin is a thyrotropin-releasing hormone (TRH) analog that was first commercialized by Tanabe Seiyaku (now Mitsubishi Tanabe Pharma) in Japan in 2000 for the oral treatment of ataxia due to spinocerebellar degeneration.

In 2008, the company filed a regulatory application seeking approval of taltirelin orally disintegrating tablets for the treatment of spinocerebellar degeneration, and in 2009 the approval was received for this formulation.

TRH is a tripeptide hormone that stimulates the release of thyroid-stimulating hormone and prolactin by the anterior pituitary. TRH is produced by the hypothalamus and travels across the median eminence to the pituitary via the hypophyseal portal system.

Taltirelin (TAL) is a thyrotropin-releasing hormone (TRH) analog that is approved for use in humans in Japan. In this study, we characterized TAL binding to and signaling by the human TRH receptor (TRH-R) in a model cell system. We found that TAL exhibited lower binding affinities than TRH and lower signaling potency via the inositol-1,4,5-trisphosphate/calcium pathway than TRH. However, TAL exhibited higher intrinsic efficacy than TRH in stimulating inositol-1,4,5-trisphosphate second messenger generation. This is the first study that elucidates the pharmacology of TAL at TRH-R and shows that TAL is a superagonist at TRH-R

……………………………

Synthesis and central nervous system actions of thyrotropin-releasing hormone analogues containing a dihydroorotic acid moiety
J Med Chem 1990, 33(8): 2130\

http://pubs.acs.org/doi/abs/10.1021/jm00170a013

………………

http://www.google.com/patents/US4665056

EXAMPLE 2

(1) 1.56 g of 1-methyl-L-4,5-dihydroorotic acid and 1.15 g of N-hydroxysuccinimide are dissolved in 30 ml of dimethylformamide, and 2.06 g of dicyclohexylcarbodiimide are added thereto at 0° C. The mixture is stirred at room temperature for 2 hours. The solution thus obtained is hereinafter referred to as “Solution A”. On the other hand, 3.43 g of benzyl L-histidyl-L-prolinate.2HCl are dissolved in dimethylformamide, and 1.67 g of triethylamine are added thereto. The mixture is stirred at 0° C. for 20 minutes, and insoluble materials are filtered off. The filtrate is added to “Solution A”, and the mixture is stirred at 0° C. for 4 hours and then at 10° C. for one day. Insoluble materials are filtered off, and the filtrate is concentrated under reduced pressure at 40° C. to remove dimethylformamide. The residue is dissolved in water, and insoluble materials are filtered off. The filtrate is adjusted to pH 8 with sodium bicarbonate and then passed through a column packed with CHP-20P resin. The column is washed with 500 ml of water, 500 ml of 20% methanol and 300 ml of 50% methanol, successively. Then, the desired product is eluted with 70% methanol. The fractions which are positive to the Pauly’s reaction are collected from the eluate and concentrated under reduced pressure, whereby 3.65 g of benzyl (1-methyl-L-4,5-dihydroorotyl)-L-histidyl-L-prolinate are obtained as an oil.

IRνmax chloroform (cm-1) 3300, 1725, 1680.

650 mg of the product obtained above are dissolved in 1 N-HCl and then lyophilized to give 690 mg of benzyl (1-methyl-L-4,5-dihydroorotyl)-L-histidyl-L-prolinate.HCl.H2 O as powder.

[α]D 22 : -39.8° (C=0.5, H2 O).

IRνmax nujol (cm-1): 1720, 1640-1680.

NMR (DMSO-d6, δ): 1.7-2.4 (m, 4H), 2.90 (s, 3H), 2.4-3.9 (m, 6H), 3.9-4.2 (m, 1H), 4.3-4.5 (m, 1H), 4.6-5.0 (m, 1H), 5.09 (s, 2H), 7.2-7.5 (m, 5H), 8.96 (s, 1H).

Mass (m/e): 496 (M+).

(2) 700 mg of benzyl (1-methyl-L-4,5-dihydroorotyl)-L-histidyl-L-prolinate are dissolved in 20 ml of methanol, and 20 mg of palladium-black are added thereto. The mixture is stirred at room temperature for 3 hours in hydrogen gas. 20 ml of water are added to the reaction mixture, and the catalyst is filtered off. The filtrate is evaporated to remove solvent. The residue is crystallized with methanol, whereby 290 mg of (1-methyl-L-4,5-dihydroorotyl)-L-histidyl-L-proline.5/4 H2 O are obtained.

M.p.: 233°-236° C. (decomp.).

[α]D 20 : -17.2° (C=0.5, H2 O).

IRνmax nujol (cm-1): 1715, 1680, 1630.

NMR (D2 O, δ): 1.7-2.4 (m, 4H), 2.6-3.9 (m, 6H), 3.03 (s, 3H), 4.0-4.45 (m, 2H), 4.95 (t, 1H), 7.27 (s, 1H), 8.57 (s, 1H).

(3) A mixture of 4.29 g of (1-methyl-L-4,5-dihydroorotyl)-L-histidyl-L-proline, 1.15 g of N-hydroxysuccinimide, 2.26 g of dicyclohexylcarbodiimide and 30 ml of dimethylformamide is stirred at 0° C. for 40 minutes and at room temperature for 80 minutes. 30 ml of 15% ammonia-methanol are then added to the mixture at 0° C., and the mixture is stirred at 0° C. for 30 minutes and at room temperature for one hour. Insoluble materials are filtered off, and the filtrate is evaporated to remove dimethylformamide. The residue is dissolved in 20 ml of water, and insoluble materials are again filtered off. The filtrate is adjusted to pH 8 with sodium bicarbonate and then passed through a column packed with CHP-20P resin. After the column is washed with 2 liters of water, the desired product is eluted with 10% methanol. The fractions which are positive to the Pauly’s reaction are collected and concentrated under reduced pressure. The residue is dissolved in 10 ml of water, and allowed to stand in a refrigerator. Crystalline precipitates are collected by filtration, washed with water, and then dried at 25° C. for one day, whereby 3.3 g of (1-methyl-L-4,5-dihydroorotyl)-L-histidyl-L-prolinamide.7/2 H2 O are obtained.

M.p.: 72°-75° C.

[α]D 25 : -13.6° (C=1, H2 O).

IRνmax nujol (cm-1): 3400, 3250, 1710, 1660, 1610, 1540.

References

  1. Fukuchi, I.; Asahi, T.; Kawashima, K.; Kawashima, Y.; Yamamura, M.; Matsuoka, Y.; Kinoshita, K. (1998). “Effects of taltirelin hydrate (TA-0910), a novel thyrotropin-releasing hormone analog, on in vivo dopamine release and turnover in rat brain”. Arzneimittel-Forschung 48 (4): 353–359. PMID 9608876.
  2. Asai, H.; Asahi, T.; Yamamura, M.; Yamauchi-Kohno, R.; Saito, A. (2005). “Lack of behavioral tolerance by repeated treatment with taltirelin hydrate, a thyrotropin-releasing hormone analog, in rats”. Pharmacology Biochemistry and Behavior 82 (4): 646–651. doi:10.1016/j.pbb.2005.11.004. PMID 16368129.
  3. Yamamura, M.; Suzuki, M.; Matsumoto, K. (1997). “Synthesis and pharmacological action of TRH analog peptide (Taltirelin)”. Nihon yakurigaku zasshi. Folia pharmacologica Japonica. 110 Suppl 1: 33P–38P. PMID 9503402.
  4. Urayama, A.; Yamada, S.; Kimura, R.; Zhang, J.; Watanabe, Y. (2002). “Neuroprotective effect and brain receptor binding of taltirelin, a novel thyrotropin-releasing hormone (TRH) analogue, in transient forebrain ischemia of C57BL/6J mice”. Life Sciences 72 (4–5): 601–607. doi:10.1016/S0024-3205(02)02268-3. PMID 12467901.
  5. Tanabe, M.; Tokuda, Y.; Takasu, K.; Ono, K.; Honda, M.; Ono, H. (2009). “The synthetic TRH analogue taltirelin exerts modality-specific antinociceptive effects via distinct descending monoaminergic systems”. British Journal of Pharmacology 150 (4): 403–414. doi:10.1038/sj.bjp.0707125. PMC 2189720. PMID 17220907.
  6. Takeuchi, Y.; Miyanomae, Y.; Komatsu, H.; Oomizono, Y.; Nishimura, A.; Okano, S.; Nishiki, T.; Sawada, T. (1994). “Efficacy of Thyrotropin-Releasing Hormone in the Treatment of Spinal Muscular Atrophy”. Journal of Child Neurology 9 (3): 287–289. doi:10.1177/088307389400900313. PMID 7930408.
  7. Tzeng, A. C.; Cheng, J.; Fryczynski, H.; Niranjan, V.; Stitik, T.; Sial, A.; Takeuchi, Y.; Foye, P.; Deprince, M.; Bach, J. R. (2000). “A study of thyrotropin-releasing hormone for the treatment of spinal muscular atrophy: A preliminary report”. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 79 (5): 435–440. doi:10.1097/00002060-200009000-00005. PMID 10994885.
  8. Kato, Z.; Okuda, M.; Okumura, Y.; Arai, T.; Teramoto, T.; Nishimura, M.; Kaneko, H.; Kondo, N. (2009). “Oral Administration of the Thyrotropin-Releasing Hormone (TRH) Analogue, Taltireline Hydrate, in Spinal Muscular Atrophy”. Journal of Child Neurology 24 (8): 1010–1012. doi:10.1177/0883073809333535. PMID 19666885.
    • EP 168 042 (Tanabe Seiyaku; appl. 10.7.1985; GB-prior. 10.7.1984).
    • JP 62 234 029 (Tanabe Seiyaku; J-prior. 27.12.1985).
    • Suzuki, M. et al.: J. Med. Chem. (JMCMAR) 33 (8), 2130-2137 (1990).

External links


Filed under: Japan pipeline, Uncategorized Tagged: JAPAN, Taltirelin

MY PROFILE ON LINKEDIN

Capromorelin in phase 2……Ghrelin Receptor Agonist

$
0
0

Capromorelin skeletal.svg

Capromorelin

N-[(2R)-1-[(3aR)-2-methyl-3-oxo-3a-(phenylmethyl)-6,7-dihydro-4H-pyrazolo[4,3-c]pyridin-5-yl]-1-oxo-3-(phenylmethoxy)propan-2-yl]-2-amino-2-methylpropanamide

2-Amino-N-[2-[3a(R)-benzyl-2-methyl-3-oxo-3,3a,4,5,6,7-hexahydro-2H-pyrazolo[4,3-c]pyridin-5-yl]-1(R)-(benzyloxymethyl)-2-oxoethyl]isobutyramide

CP-424391-18, (3ar)-3a-benzyl-2-methyl-5-(2-methylalanyl-o-benzyl-d-seryl)-3-oxo-3,3a,4,5,6,7-hexahydro-2h-pyrazolo[4,3-c]pyridine

Gastro-esophageal reflux disease (GERD)

193273-66-4 free form
193270-49-4 (monoHCl)
193273-67-5 (monomesylate)
193273-69-7 (L-tartrate(1:1))

505.6086

C28 H35 N5 O4

CP-424391
RQ-00000005
CP-424391-18 (tartrate)

Pfizer (Originator)
RaQualia

Phase II

Capromorelin (CP-424,391) is an investigational medication developed by the Pfizer drug company.[2] [3] It functions as a growth hormone secretagogue and ghrelin mimetic which causes the body to secrete human growth hormone in a way usually seen at puberty and in young adulthood. Initial studies have shown the drug to directly raise insulin growth factor 1 (IGF-1) and growth hormone levels.[4]

The drug is being considered for its therapeutic value in aging adults because elderly people have much lower levels of growth hormone and less lean muscle mass, which can result in weakness and frailty.[5]

In a one-year treatment trial (starting 1999) with 395 seniors between 65 and 84 years old, patients who received the drug gained an average of 3 lb (1.4 kg) in lean body mass in the first six months and also were better able to walk in a straight line in a test of balance, strength and coordination. After 12 months, patients receiving capromorelin also had an improved ability to climb stairs, however the results were not good enough to continue the trial for the 2nd planned year.[6]

Capromorelin, however, has not been approved by major regulatory bodies such as the World Health Organization, the European Medicines Agency or the United States FDA. In the U.S. at least, approval is not expected to be forthcoming any time soon, because the FDA does not consider aging a disease, and so requires extraordinary evidence of benefit and non-toxicity to approve a drug for use as an anti-aging agent.[7]

Ghrelin is a peptide that promotes a growth hormone secreted by the stomach and exhibits a variety of physiological effects, including the promotion of appetite, gastrointestinal tract motility and stomach acid secretion, as well as improved heart function. Capromorelin (RQ-00000005) is a ghrelin receptor agonist and, because it has been shown to increase body weight without increasing body fat and to improve motility and appetite in the elderly, it has the potential for many uses, including frailty and GERD.

…………………………………………………………………

WO 1997024369

 https://www.google.com/patents/WO1997024369A1?cl=en

…………………………..

EP 0869968; JP 1999501945; WO 9724369

The intermediate dipeptide (VI) was prepared by two similar ways. Treatment of N-Boc-O-benzyl-D-serine (I) with MeI and K2CO3 produced the methyl ester (II). Subsequent deprotection of the Boc group of (II) with trifluoroacetic acid gave aminoester (III), which was coupled with N-Boc-alpha-methylalanine (IV) using EDC and HOBt yielding (V). Hydrolysis of the resulting dipeptide ester (V) then provided intermediate (VI). In an alternative procedure, N-Boc-alpha-methyl alanine (IV) was activated as the N-hydroxysuccinimidyl ester (VII), which was condensed with O-benzyl-D-serine (VIII) to produce dipeptide (VI).

Methyl 4-oxopiperidine-3-carboxylate (IX) was protected as the tert-butyl carbamate (X) with Boc2O. This was alkylated with benzyl bromide in the presence of NaH to provide the racemic benzyl derivative (XI). Subsequent cyclization of (XI) with methylhydrazine produced the pyrazolopyridine (XII), which was deprotected with trifluoroacetic acid. The resulting amine (XIII) was then coupled with dipeptide (VI) using EDC and HOBt to afford the diastereomeric amides (XIV). After chromatographic isolation of the (R,R)-diastereoisomer, acid deprotection of the Boc group furnished the title compound.

 

References

  1. Khojasteh-Bakht SC, O’donnell JP, Fouda HG, Potchoiba MJ. Metabolism, pharmacokinetics, tissue distribution, and excretion of [14C]CP-424391 in rats. Drug Metabolism and Disposition. 2005 Jan;33(1):190-9. PMID 15486077
  2. Carpino PA, Lefker BA, Toler SM, Pan LC, Hadcock JR, Murray MC, Cook ER, DiBrino JN, DeNinno SL, Chidsey-Frink KL, Hada WA, Inthavongsay J, Lewis SK, Mangano FM, Mullins MA, Nickerson DF, Ng O, Pirie CM, Ragan JA, Rose CR, Tess DA, Wright AS, Yu L, Zawistoski MP, Pettersen JC, DaSilva-Jardine PA, Wilson TC, Thompson DD. Discovery and biological characterization of capromorelin analogues with extended half-lives. Bioorganic and Medicinal Chemistry Letters. 2002 Nov 18;12(22):3279-82. PMID 12392732
  3. Carpino PA, Lefker BA, Toler SM, Pan LC, Hadcock JR, Cook ER, DiBrino JN, Campeta AM, DeNinno SL, Chidsey-Frink KL, Hada WA, Inthavongsay J, Mangano FM, Mullins MA, Nickerson DF, Ng O, Pirie CM, Ragan JA, Rose CR, Tess DA, Wright AS, Yu L, Zawistoski MP, DaSilva-Jardine PA, Wilson TC, Thompson DD. Pyrazolinone-piperidine dipeptide growth hormone secretagogues (GHSs). Discovery of capromorelin. Bioorganic and Medicinal Chemistry. 2003 Feb 20;11(4):581-90. PMID 12538023
  4. Pan LC, Carpino PA, Lefker BA, Ragan JA, Toler SM, Pettersen JC, Nettleton DO, Ng O, Pirie CM, Chidsey-Frink K, Lu B, Nickerson DF, Tess DA, Mullins MA, MacLean DB, DaSilva-Jardine PA, Thompson DD. Preclinical pharmacology of CP-424,391, an orally active pyrazolinone-piperidine growth hormone secretagogue. Endocrine. 2001 Feb;14(1):121-32. PMID 11322494
  5. Thompson DD. Aging and sarcopenia. Journal of Musculoskeletal and Neuronal Interactions. 2007 Oct-Dec;7(4):344-5. PMID 18094505
  6. Heidi K. White, Charles D. Petrie, William Landschulz, David MacLean, Ann Taylor, Kenneth Lyles, Jeanne Y. Wei, Andrew R. Hoffman, Roberto Salvatori, Mark P. Ettinger, Miriam C. Morey, Marc R. Blackman, George R. Merriam for the Capromorelin Study Group. Effects of an Oral Growth Hormone Secretagogue in Older Adults. Journal of Clinical Endocrinology & Metabolism. April 2009, Vol. 94, No. 4 1198-1206. doi:10.1210/jc.2008-0632. PMID 19174493
  7. Hersch EC, Merriam GR. Growth hormone (GH)-releasing hormone and GH secretagogues in normal aging: Fountain of Youth or Pool of Tantalus? Clinical Interventions in Aging. 2008;3(1):121-9. PMID 18488883

Researchers

Carpino, P.A.; Lefker, B.A.; Toler, S.M.; et al.
Design, synthesis and biological evaluation of a novel series of pyrazolidone-piperidine growth hormone secretagogues
216th ACS Natl Meet (August 23-27, Boston) 1998, Abst MEDI 276

12-31-1998
TREATMENT OF INSULIN RESISTANCE WITH GROWTH HORMONE SECRETAGOGUES

 

3-16-2005
Treatment of insulin resistance
2-2-2005
Neuroprotective drug
1-7-2004
Process for preparing growth hormone secretagogues
4-2-2003
Process for preparing growth hormone secretagogues
9-11-2002
Treatment of insulin resistance with growth hormone secretagogues
9-27-2000
Heterocyclic compounds
8-30-2000
Growth hormone secretagogues
8-23-2000
Heterocyclic compounds
12-24-1999
THERAPEUTIC COMBINATIONS OF (SELECTIVE) ESTROGEN RECEPTOR MODULATORS (SERM) AND GROWTH HORMONE SECRETAGOGUES (GHS) FOR TREATING MUSCULOSKELETAL FRAILTY
4-23-1999
PROSTAGLANDIN AGONISTS AND THEIR USE TO TREAT BONE DISORDERS
10-19-2011
Method of Stimulating the Motility of the Gastrointestinal System Using Growth Hormone Secretagogues
12-5-2008
Methods of treating emesis using growth hormone secretagogues
10-24-2008
Growth-Hormone Secretagogues
8-29-2008
Method of treating cell proliferative disorders using growth hormone secretagogues
2-29-2008
Treatment For Alzheimer’s Disease And Related Conditions
8-17-2007
Method of stimulating the motility of the gastrointestinal system using growth hormone secretagogues
5-3-2007
GROWTH-HORMONE SECRETAGOGUES
8-18-2006
Combination of gh secret agogues and pde4 inhibitors for the treatment of alzheimers disease
11-25-2005
Method of reducing C-reactive protein using growth hormone secretagogues
3-25-2005
Pharmaceutical compositions and methods comprising combinations of 2-alkylidene-19-nor-vitamin D derivatives and a growth hormone secretagogue

Filed under: Phase2 drugs, Uncategorized Tagged: Capromorelin

India business robust in terms of growth: Glenmark….videos

$
0
0

 

SOME LINKS ON VIDEOS

CLICK TO VIEW

India business robust in terms of growth: Glenmark on Q1 

profit.ndtv.com/…/news/video-india-business-robust…
Aug 2, 2013

NDTV Profit News Video Clip on India business robust in terms of growth: … chairman and managing director …


Filed under: COMPANIES, glenmark, GLENMARK Tagged: GLENMARK

Astellas’ Dificlir (fidaxomicin) could save NHS thousands of pounds

$
0
0

 

Fidaxomicin2DCSD.svg

Fidaxomicin

873857-62-6 

3-(((6-Deoxy-4-O-(3,5-dichloro-2-ethyl-4,6-dihydroxybenzoyl)-2-O-methyl-β-D-mannopyranosyl)oxy)-methyl)-12(R)-[(6-deoxy-5-C-methyl-4-O-(2-methyl-1-oxopropyl)-β-D-lyxo-hexopyranosyl)oxy]-11(S)-ethyl-8(S)-hydroxy-18(S)-(1(R)-hydroxyethyl)-9,13,15-trimethyloxacyclooctadeca-3,5,9,13,15-pentaene-2-one

C52H74Cl2O18   Molecular Weight: 1058.03916 

US FDA:link         Launched – 2011   Clostridium difficile-associated diarrhea

OPT-80  
PAR-101

Astellas' Dificlir could save NHS thousands of pounds

Using Astellas’ Dificlir (fidaxomicin) as a first-line treatment for clostridium difficile infection (CDI) is not only clinically effective but could also save the National Health Service thousands of pounds compared to the standard of care, according to data from a late-stage study

Read more at: http://www.pharmatimes.com/Article/14-05-14/Astellas_Dificlir_could_save_NHS_thousands_of_pounds.aspx#ixzz31qrtFXlT

 

Fidaxomicin (trade names DificidDificlir, and previously OPT-80 and PAR-101) is the first in a new class of narrow spectrummacrocyclic antibiotic drugs.[2] It is a fermentation product obtained from the actinomycete Dactylosporangium aurantiacum subspecies hamdenesis.[3][4] Fidaxomicin is non-systemic, meaning it is minimally absorbed into the bloodstream, it is bactericidal, and it has demonstrated selective eradication of pathogenic Clostridium difficile with minimal disruption to the multiple species ofbacteria that make up the normal, healthy intestinal flora. The maintenance of normal physiological conditions in the colon can reduce the probability of Clostridium difficile infection recurrence.[5] [6]

It is marketed by Cubist Pharmaceuticals after acquisition of its the originating company Optimer Pharmaceuticals. The target use is for treatment of Clostridium difficile infection. Fidaxomicin is available in a 200 mg tablet that is administered every 12 hours for a recommended duration of 10 days. Total duration of therapy should be determined by the patient’s clinical status. It is currently one of the most expensive antibiotics approved for use. A 20 tab pack costs upwards of £1350.[7]

Fidaxomicin works by inhibiting the bacterial enzyme RNA polymerase, resulting in the death of Clostridium difficile.[8] It is active against Gram positive bacteria especially clostridia. The minimal inhibitory concentration (MIC) range for C. difficile (ATCC 700057) is 0.03–0.25 μg/mL.[3]

Approvals and indications

For the treatment of CDAD (Clostridium difficile-Associated diarrhea), the drug won an FDA advisory panel’s unanimous approval on April 5, 2011.[14] and full FDA approval on May 27, 2011.[15]

Fidaxomicin is an antibiotic approved and launched in 2011 in the U.S. for the treatment of Clostridium difficile-associated diarrhea (CDAD) in adults 18 years of age and older. In September 2011, the product received a positive opinion in the E.U. and final approval was assigned in December 2011. First E.U. launch took place in the U.K. in June 2012. Optimer Pharmaceuticals is conducting phase III clinical trials for the prevention of Clostridium difficile-associated diarrhea in patients undergoing hematopoietic stem cell transplant. Preclinical studies are ongoing for potential use in the prevention of methicillin-resistant Staphylococcus (MRS) infection. Early clinical studies had been under way for the prevention and treatment of vancomycin-resistant enterococcal (VRE) infection; however, no recent development has been reported for this indication.

The compound is a novel macrocyclic antibiotic that is produced by fermentation. Its narrow-spectrum activity is highly selective for C. difficile, thus preserving gut microbial ecology, an important consideration for the treatment of CDAD.

In May 2005, Par Pharmaceutical and Optimer entered into a joint development and collaboration agreement for fidaxomicin. However, rights to the compound were returned to Optimer in 2007. The compound was granted fast track status by the FDA in 2003. In 2010, orphan drug designation was assigned to fidaxomicin in the U.S. by Optimer Pharmaceuticals for the treatment of pediatric Clostridium difficile infection (CDI). In 2011, the compound was licensed by Optimer Pharmaceuticals to Astellas Pharma in Europe and certain countries in the Middle East, Africa, the Commonwealth of Independent States (CIS) and Japan for the treatment of CDAD. In 2011, fidaxomicin was licensed to Cubist by Optimer Pharmaceuticals for comarketing in the U.S. for the treatment of CDAD. In July 2012, the product was licensed by Optimer Pharmaceuticals to Specialised Therapeutics Australia in AU and NZ for the treatment of Clostridium difficile-associated infection. OBI Pharma holds exclusive commercial rights in Taiwan, where the compound was approved for the treatment of CDAD in September 2012, and in December 2012, the product was licensed to AstraZeneca in South America with commercialization rights also for the treatment of CDAD. 

Clinical trials

Good results were reported in 2009 from a North American phase III trial comparing it with oral vancomycin for the treatment ofClostridium difficile infection (CDI)[9][10] The study met its primary endpoint of clinical cure, showing that fidaxomicin was non-inferior to oral vancomycin (92.1% vs. 89.8%). In addition, the study met its secondary endpoint of recurrence: 13.3% of the subjects had a recurrence with fidaxomicin vs. 24.0% with oral vancomycin. The study also met its exploratory endpoint of global cure (77.7% for fidaxomicin vs. 67.1% for vancomycin).[11] Clinical cure was defined as patients requiring no further CDI therapy two days after completion of study medication. Global cure was defined as patients who were cured at the end of therapy and did not have a recurrence in the next 4 weeks.[12]

Fidaxomicin was shown to be as good as the current standard-of-care, vancomycin, for treating CDI in a Phase III trial published in February 2011.[13] The authors also reported significantly fewer recurrences of infection, a frequent problem with C. difficile, and similar drug side effects.

References

  1.  “DIFICID®” (PDF). TGA eBusiness Services. Specialised Therapeutics Australia Pty Ltd. 23 April 2013. Retrieved 31 March 2014.
  2.  Revill, P.; Serradell, N.; Bolós, J. (2006). “Tiacumicin B”. Drugs of the Future 31 (6): 494. doi:10.1358/dof.2006.031.06.1000709.
  3.  “Dificid, Full Prescribing Information”. Optimer Pharmaceuticals. 2013.
  4.  “Fidaxomicin”. Drugs in R&D 10: 37. 2012. doi:10.2165/11537730-000000000-00000.
  5.  Louie, T. J.; Emery, J.; Krulicki, W.; Byrne, B.; Mah, M. (2008). “OPT-80 Eliminates Clostridium difficile and is Sparing of Bacteroides Species during Treatment of C. Difficile Infection”Antimicrobial Agents and Chemotherapy 53 (1): 261–3. doi:10.1128/AAC.01443-07.PMC 2612159PMID 18955523.
  6.  Johnson, Stuart (2009). “Recurrent Clostridium difficile infection: A review of risk factors, treatments, and outcomes”. Journal of Infection58 (6): 403–10. doi:10.1016/j.jinf.2009.03.010PMID 19394704.
  7. http://www.medicinescomplete.com/mc/bnf/current/PHP18388-dificlir.htm#PHP18388-dificlir
  8.  Srivastava, Aashish; Talaue, Meliza; Liu, Shuang; Degen, David; Ebright, Richard Y; Sineva, Elena; Chakraborty, Anirban; Druzhinin, Sergey Y; Chatterjee, Sujoy; Mukhopadhyay, Jayanta; Ebright, Yon W; Zozula, Alex; Shen, Juan; Sengupta, Sonali; Niedfeldt, Rui Rong; Xin, Cai; Kaneko, Takushi; Irschik, Herbert; Jansen, Rolf; Donadio, Stefano; Connell, Nancy; Ebright, Richard H (2011). “New target for inhibition of bacterial RNA polymerase: ‘switch region’”Current Opinion in Microbiology 14 (5): 532–43.doi:10.1016/j.mib.2011.07.030PMC 3196380PMID 21862392.
  9.  “Optimer’s North American phase 3 Fidaxomicin study results presented at the 49th ICAAC” (Press release). Optimer Pharmaceuticals. September 16, 2009. Retrieved May 7, 2013.
  10.  “Optimer Pharmaceuticals Presents Results From Fidaxomicin Phase 3 Study for the Treatment” (Press release). Optimer Pharmaceuticals. May 17, 2009. Retrieved May 7, 2013.
  11.  Golan Y, Mullane KM, Miller MA (September 12–15, 2009). “Low recurrence rate among patients with C. difficile infection treated with fidaxomicin”. 49th interscience conference on antimicrobial agents and chemotherapy. San Francisco.
  12.  Gorbach S, Weiss K, Sears P, et al (September 12–15, 2009). “Safety of fidaxomicin versus vancomycin in treatment of Clostridium difficile infection”. 49th interscience conference on antimicrobial agents and chemotherapy. San Francisco.
  13.  Louie, Thomas J.; Miller, Mark A.; Mullane, Kathleen M.; Weiss, Karl; Lentnek, Arnold; Golan, Yoav; Gorbach, Sherwood; Sears, Pamela; Shue, Youe-Kong; Opt-80-003 Clinical Study, Group (2011). “Fidaxomicin versus Vancomycin forClostridium difficileInfection”. New England Journal of Medicine 364 (5): 422–31. doi:10.1056/NEJMoa0910812PMID 21288078.
  14.  Peterson, Molly (Apr 5, 2011). “Optimer Wins FDA Panel’s Backing for Antibiotic Fidaxomicin”. Bloomberg.
  15.  Nordqvist, Christian (27 May 2011). “Dificid (fidaxomicin) Approved For Clostridium Difficile-Associated Diarrhea”Medical News Today.

 

http://www.pharmatimes.com/Article/14-05-14/Astellas_Dificlir_could_save_NHS_thousands_of_pounds.aspx


Filed under: Uncategorized Tagged: Dificlir, fidaxomicin

Study shows oxytocin hormone enhances placebo response in analgesia model

आयुर्वेद न्यूट्रास्यूटीकल्स ; अधिक गर्मी के कारण होने वाली तकलीफो से बचने के लिये ………

$
0
0

Originally posted on आयुर्वेद : ई०टी०जी० आयुर्वेदास्कैन : AYURVEDA : ETG AyurvedaScan ; ई० एच० जी० होम्योपैथीस्कैन : E.H.G. HomoeopathyScan:

आयुर्वेद की विशेषता यही है कि सभी मौसम के लिये सभी के लिये आयुर्वेद के मनीषियों ने मौसम से प्राप्त सभी वस्तुओ के सटीक उपयोग के लिये combinations  दे दिये है /

गर्मी के मौसम मे गर्म हवाओ के चलने और लू लपट high degree temperature के चलते हुये बहुत सी तकलीफे शरीर मे अचानक पैदा होने की स्तिथि बन जाती है , इन सभी अवस्थाओ से बचने के लिये नीचे लिखे nueutraceutical   को अपनाइये और फायदा उठाइये ;

साम्ग्री सब आप्के किचन मे मिल जायेगी /

१- एक छोटा प्याज , बड़ा हो तो आधा कर ले

२- एक कच्चा छोटा आम / अमिया

३-१५ -२० पुदीना की पत्ती / अधिक भी छोड़ सकते है

४- एक टुकड़ा अदरख

५- एक चम्मच जल जीरा मसाला पाउडर

५- आधा चम्मच काली मिर्च

६- स्वादानुसार काला नमक

७- एक या दो चम्मच शक्कर  / चीनी  / गुड़

८- आधा या…

View original 277 more words


Filed under: Uncategorized

BioCryst Pharmaceuticals Inc. ( BCRX ) will be reporting results from OPuS-1, a phase IIa trial of orally-administered BCX4161 in patients with hereditary angioedema

$
0
0

(RTTNews.com) – BioCryst Pharmaceuticals Inc. ( BCRX ) will be reporting results from OPuS-1, a phase IIa trial of orally-administered BCX4161 in patients with hereditary angioedema, on Tuesday, May 27, 2014 at 8:30 a.m. Eastern Time.

The OPuS-1 clinical trial is testing 400 mg of BCX4161 administered three times daily for 28 days in up to 25 hereditary angioedema patients who have a high frequency of attacks (≥ 1 per week), in a randomized, placebo-controlled, two-period cross-over design.
Read more: http://www.nasdaq.com/article/bcrx-to-watch-out-for-gtiv-adopts-poison-pill-teva-qgen-drtx-get-fda-nod-20140527-00005#ixzz335Khl0sk

 

BCX-4161 is a novel, selective inhibitor of plasma kallikrein in development for prevention of attacks in patients with hereditary angioedema (HAE). By inhibiting plasma kallikrein, BCX-4161 suppresses bradykinin production. Bradykinin is the mediator of acute swelling attacks in HAE patients.

 

……………………………….

old article

BCRX – BioCryst – Entering The HAE Market

BioCryst announced on Monday July 22 the successful completion of a Phase I study on the safety and PK of BCX4161, a candidate for the treatment of Hereditary angioedema (HAE). HAE is a genetic disorder resulting from the loss or dysfunction of complement C1 Inhibitor (C1INH).

Among the functions performed by C1INH is regulation of the hormone bradykinin, which when activated, leads to the dilation of blood vessels. Left unchecked, excess bradykinin can cause painful attacks of swelling, or angioedemas, in any part of the body, including the face, abdomen, hands, and larynx. Death can occur from asphyxiation, particularly in children.

The mechanics involved in HAE are fairly well understood today. There are several approved drugs available today that work at three major points in the pathway. Ultimately, each prevents bradykinin from activating its receptor on endothelial cells.

New Tx for HAE

C1 Inhibitors, of which four have been approved, prevent Factor XIIa activation of Plasma Kallikrein and inhibit Kallikrein itself. The single specific Kallikrein inhibitor is Kalbitor from Dyax. C1INHs and kallikrein inhibitors prevent the formation of bradykinin (labeled “BK” in this diagram). Then there is Firazyr from Shire, a B2 bradykinin receptor antagonist; while not preventing overproduction of the hormone, activation of downstream activity is suppressed.

Interestingly, of all the available therapies, only C1INH Cinryze from Viropharma is approved for prophylactic use- all others are designated strictly for treatment of acute attacks. A key reason for this is Cinryze’s long half-life, allowing sustained activity over longer intervals. As each of these drugs are given by injection, frequent treatment is not practical. Consider, for instance, Kalbitor has a half life of just two hours.

This is where BioCryst comes in. The company is pursuing the less crowded prophylaxis indication. It has the only orally available (although just barely) plasma kallikrein inhibitor. And while PK is not great, requiring three-times daily dosing to ensure adequate drug levels, pills make this a feasible option. As you can see, 800 mg appears optimal, however, 400 mg was selected as the Phase IIa dose due to 3 cases of moderate AEs seen at 800. This study was in healthy volunteers and the drug was otherwise well tolerated [ref].

BCX4161 7day PK

(From Company Presentation)

BCX4161 is an interesting compound.  Based on patent literature, we believe the molecule has a similar structure to the one illustrated below:

Potential BCX4161 Structure

 

BCX4161 is not a specific inhibitor of kallikrein, and in fact has near equal potency against Factor XIIa. This dual-activity is also seen with C1INH, setting the compound apart from Kalbitor and Firazyr.

The different profile may improve efficacy, but that is unknown at this point. Along with Factor XIIa, BCX4161 inhibits additional factors involved in coagulation. Bleeding issues has been something the company has been testing and will be certain to monitor. As a drug designed for chronic use, safety will be a major concern.

A 25 patient Phase IIa study set for Q4 will be placebo-controlled double-blind crossover of the following design:

Phase IIa Design

(From Company Presentation)

Individuals with a high frequency of attacks(~1/week) will be enrolled, the primary endpoint is attack frequency. Viropharma conducted a pivotal trial of similar design (but two twelve week dosing periods), reporting ~50% reduction in attacks vs. placebo. We imagine BioCryst would need to achieve results in this range for the drug to be competitive.

A major impedance toward these efficacy goals will likely be individual adherence to dosing every eight hours schedule. Missed doses will mean severe drops in drug levels, potentially putting the patient at risk for an attack. The company noted patients on Cinryze occasionally miss doses with no apparent adverse effect. We will see if this holds true for their own compound.

The Phase IIa is being run in Germany, ostensibly because of the country’s well organized HAE medical treatment system. The study is expected to initiate in 4Q 2013. BioCryst aims to market the drug in the U.S. on their own, likely partnering in the EU.

Handicapping this Phase II is rather difficult with the lack of any prior efficacy results. BioCryst has selected a well-validated target in a fairly well understood disease. The data suggests BCX4161 is an active drug. What we will soon find out is whether the compound is active enough and has a sufficiently clean profile. As attractive as oral dosing is- it has an achilles heel. Regardless of the medication, patients continue to have attacks, only of less frequency and severity. If a patient should suffer major laryngeal swelling, pills may not be an option as a rescue medicine. Cinryze on the hand can serve as both prophylaxis and acute treatment.

Commercially, we believe the compound will have a difficult time competing with Cinryze. True, Cinryze has its own issues, namely a requirement for infusions every 3 to 4 days, but it is difficult to see how a 3-times/day treatment is much of an improvement. In any case, by the time BCX4161 reaches the market, Viropharma should have a much simpler subcutaneous version of its C1INH available, allowing it to maintain a strong monopoly in prophylaxis HAE treatments. Additional competition may come in the form of a follow-up kallikrein inhibitor in development at Dyax; the long acting antibody is designed specifically for the prophylaxis market and is expected to enter the clinic 2H 2013.


Filed under: Phase2 drugs Tagged: BCX 4161, BCX4161, phase 2

Polymer Nanoflower Encapsulates Two Cancer Drugs to Hit Tumors with More Punch

$
0
0

Originally posted on lyranara.me:

Many existing anti-cancer drugs can be disappointingly ineffective in clinical practice, but often it is the delivery method and not the medication itself that limits effectiveness. Being able to deliver multiple drugs together, each with a different mechanism of action, to their target can be considerably more powerful than separate administrations. Researchers at North Carolina State University and the University of North Carolina at Chapel Hill have developed a “nanoflower” made out of a hydrophilic polymer that carries camptothecin and doxorubicin directly into cancer cells.

nanoflower Polymer Nanoflower Encapsulates Two Cancer Drugs to Hit Tumors with More Punch

The hydrophobic drugs are encapsulated within the polyethylene glycol structure similarly to how proteins fold in on themselves. At about 50 nanometers in diameter, the nanoflowers can be injected into the bloodstream to seek out cancer cells. In an animal study, the structures stayed together until they penetrated lung cancer cells by taking advantage of “lipid raft and clathrin-mediated endocytotic pathway without premature leakage,” according…

View original 39 more words


Filed under: Uncategorized

API SCALEUP (R AND D)

Cocrystals

$
0
0

Abstract Image

 

Active pharmaceutical ingredients (APIs) are frequently delivered to the patient in the solid state as part of such dosage forms as tablets, capsules, etc.In this context the ability to deliver the drug to the patient in a safe, efficacious and cost-effective way depends largely on the physicochemical properties of the APIs in the solid state, and ……..read more

http://www.allfordrugs.com/cocrystals/


Filed under: Uncategorized Tagged: cocrystals

FDA May 2014 Products Receiving Orphan Designation

$
0
0

Originally posted on Orphan Druganaut Blog:

.

.

.

.

The chart below identifies FDA May 2014 Products Receiving Orphan Designation as of 05/31/14 in ascending “Orphan Drug Designation Date” order.

FDA May 2014 Products Receiving Orphan Designation 

# Generic Name/ODD Date Sponsor Company Indication
1 Filanesib/ 05.06 Array BioPharma Multiple Myeloma
2 Autologous dendritic cells pulsed with allogeneic tumor cell lysate/ 05.06 Amphera BV (Netherlands) Malignant Mesothelioma
3 Ex vivo cultured human mesenchymal stromal cells / 05.08 iCell Science AB (Sweden) Prevention of graft rejection following solid organ transplantation
4 Adalimumab/ 05.13 AbbVie Uveitis
5 Diazoxide choline / 05.13 Essentialis Prader-Willi Syndrome
6 Vasoactive intestinal peptide (VIP)-elastin-like peptide (ELP) fusion protein / 05.13 PhaseBio Pharmaceuticals Pulmonary arterial hypertension
7 (Z)-3-(3-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,4-triazol-1-yl)-N-(pyrazin-2-yl)acrylohydrazide / 05.14 Karyopharm Therapeutics Diffuse large B-cell lymphoma
8 177Lu-tetraxetan-tetulomab / 05.14 Nordic Nanovector AS (Norway) Follicular Lymphoma
9 Selinexor; (Z)-3-(3-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,4-triazol-1-yl)-N-(pyrazin-2-yl)acrylohydrazide / 05.14 Karyopharm Therapeutics Acute myeloid leukemia
10 Menadione Sodium Bisulfite/ 05.14

View original 198 more words


Filed under: Uncategorized

FDA Breakthrough Therapy Designation: Another For Genentech And Cancer

$
0
0

Originally posted on Orphan Druganaut Blog:

On May 31st, Genentech (member of the Roche Group) strategically announces that the FDA grants the Breakthrough Therapy Designation (BTD) to the company’s investigational cancer immunotherapy MPDL3280A (anti-PDL1) for the treatment of Bladder Cancer. At the 50th Annual Meeting of the American Society of Clinical Oncology (ASCO), now in progress in Chicago, Dr. Thomas Powles, M.D., clinical Professor of Genitourinary Oncology, Barts Cancer Institute at the Queen Mary University of London, is presenting on May 31st, Abstract #5011 (Results of the Phase I MPDL3280A Study).

The Phase I MPDL3280A Study, a single-arm, multi-center, open label trial, shows that MPDL3280A “shrank tumors (ORR – Overall Response Rate) in 43% (13/30) of people previously treated for metastatic Urothelial Bladder Cancer (UBC), whose tumors were characterized as PD-L1 (Programmed Death Ligand-1) positive by a test being developed by Roche.”

Per the Genentech Press Release, bladder cancer:

•   Is the 9th most…

View original 111 more words


Filed under: Uncategorized

Italy’s Newron files Parkinson’s drug with FDA

$
0
0

SAFINAMIDE

 

cas  202825-46-5 (mesylate)

N2-{4-[(3-fluorobenzyl)oxy]benzyl}-L-alaninamide

Newron Pharmaceuticals and fellow Italy-headquartered partner Zambon have filed their investigational Parkinson’s disease treatment safinamide with regulators in the USA.

The submission to the US Food and Drug Administration is for safinamide as add-on therapy in early and mid-to late stage PD patients. Newron said the filing was based on “completion of activities agreed upon during meetings” with the FDA, noting that a marketing authorisation application was submitted to the European Medicines Agency in December.

Read more at: http://www.pharmatimes.com/Article/14-05-30/Italy_s_Newron_files_Parkinson_s_drug_with_FDA.aspx#ixzz33LlGLEt7

133865-89-1, Fce 26743, AC1L2ZLK, CHEMBL396778, MolPort-005-942-375,
Fce-26743, (S)-2-((4-((3-Fluorobenzyl)oxy)benzyl)amino)propanamide
Molecular Formula: C17H19FN2O2   Molecular Weight: 302.343363

 

 

Safinamide (EMD 1195686) is a candidate drug against Parkinson’s disease with multiple methods of action.[1] In 2007, a Phase III clinical trial was started. It was scheduled to run until 2011.[2] The compound was originally discovered at Farmitalia-Carlo Erba and developed by Newron Pharmaceuticals, which sold the rights to Merck-Serono in 2006. In October 2011 Merck-Serono announced that they would give all rights to develop the compound back to Newron.[3]

Potential additional uses might be restless legs syndrome (RLS) and epilepsy.[4] They were being tested in Phase II trials in 2008, but no results are available.

 

Adverse effects

Common adverse events in clinical trials were nausea, dizziness, tiredness, headache and backache. There was no significant difference in the occurrence of these effects between safinamide and placebo treated patients.[5]

Methods of action

Parkinson and RLS relevant mechanisms

Safinamide is a reversible and selective monoamine oxidase B inhibitor, reducing degradation of dopamine, and a glutamate release inhibitor.[6][5] It also seems to inhibit dopamine reuptake.[7] Additionally, safinamide blocks sodium and calcium channels.[6]

References

  1.  Fariello, RG (2007). “Safinamide”. Neurotherapeutics 4 (1): 110–116. doi:10.1016/j.nurt.2006.11.011PMID 17199024.
  2.  Study of Safinamide in Early Parkinson’s Disease as Add-on to Dopamine Agonist (MOTION)
  3.  Merck Returns Rights for Safinamide to Newron, 21 October 2011.
  4.  Chazot, PL (2007). “Drug evaluation: Safinamide for the treatment of Parkinson’s disease, epilepsy and restless legs syndrome”. Current Opinion in Investigational Drugs 8 (7): 570–579. PMID 17659477.
  5.  H. Spreitzer (14 April 2014). “Neue Wirkstoffe – Safinamid”. Österreichische Apothekerzeitung (in German) (8/2014): 30.
  6.  Caccia, C; Maj, R; Calabresi, M; Maestroni, S; Faravelli, L; Curatolo, L; Salvati, P; Fariello, RG (2006). “Safinamide: From molecular targets to a new anti-Parkinson drug”. Neurology 67 (7 Suppl 2): S18–23. PMID 17030736.
  7.  Merck Serono: Vielversprechende Daten zur kognitiven Wirkung von Safinamid bei Parkinson im Frühstadium.(German) 8 June 2007.
1-13-2012
PHARMACEUTICAL COMPOSITION
10-12-2011
Pharmaceutical composition
10-22-2004
Methods of treating lower urinary tract disorders using sodium channell modulators
7-16-1999
ALPHA-AMINOAMIDE DERIVATIVES USEFUL AS ANALGESIC AGENTS

 


ANTHONY MELVIN CRASTO

THANKS AND REGARD’S
DR ANTHONY MELVIN CRASTO Ph.D

amcrasto@gmail.com

MOBILE-+91 9323115463
GLENMARK SCIENTIST ,  INDIA
web link
http://anthonycrasto.jimdo.com/
Congratulations! Your presentation titled “Anthony Crasto Glenmark scientist, helping millions with websites” has just crossed MILLION views.
アンソニー     安东尼   Энтони    안토니     أنتوني
join my process development group on google
you can post articles and will be administered by me on the google group which is very popular across the world
LinkedIn group
 
blogs are
 
shark

 

 

 


Filed under: Uncategorized Tagged: SAFINAMIDE

AMUVATINIB

$
0
0

AMUVATINIB

Name N-(3,4-Methylenedioxiphenylmethyl) -4 – (benzofuro [3,2-d] pyrimidin-4-yl) piperazine-1-carbothioamide.
CAS 850879-09-3
Formula 23 H 21 N 5 O 3 S
MW 447.51
Synonim MN-470, SGI-0470-03

Amuvatinib (MP-470) is an orally bioavailable synthetic carbothioamide with potential antineoplastic activity. Multitargeted receptor tyrosine kinase inhibitor MP470 binds to mutant forms of the stem cell factor receptor (c-Kit; SCFR), inhibiting clinically relevant mutants of this receptor tyrosine kinase that may be associated with resistance to therapy. In addition, MP470 inhibits activities of other receptor tyrosine kinases, such as c-Met, Ret oncoprotein, and mutant forms of Flt3 and PDGFR alpha, which are frequently dysregulated in variety of tumors. This agent also suppresses the induction of DNA repair protein Rad51, thereby potentiating the activities of DNA damage-inducing agents. Mutant forms of c-Kit are often associated with tumor chemoresistance.

 

 

http://www.google.co.in/patents/EP1678166A2?cl=en

Scheme 1

Figure imgf000034_0001

EXAMPLE 34 Synthesis and Analysis of Further Illustrative Compounds Compound (111-1-3), also referred to herein as HPK56/MP-470, is an illustrative compound of the present invention having the following structure:

 

Figure imgf000104_0001

Analogues of (111-1 -3) were designed and synthesized in order to evaluate and optimize kinase selectivity, aqueous solubility, and to improve pharmacokinetic and pharmacodynamic profiles. Illustrative synthesis approaches for generating (111-1 -3) analogues are depicted in the synthesis schemes below. Synthesis of R-i substituted benzofuranopyrimidines was undertaken. The methyl 3-guanidinobenzofuran-2-carboxylate is prepared from methyl 3-aminobenzofuran-2-carboxylate by reacting with cyanoacetamide in presence of dioxane and dry HCI gas. The obtained guanidine is cyclized in the presence of aqueous NaOH. Similar procedures were utilized for preparing 2- substituted (111-1-3) and its analogues as depicted in the Schemes 8-10 set forth below. Introduction of -NH2 at the 2 position was utilized for various sulfonic, inorganic and hydroxyacid salts. Illustrative compounds are shown in Table 4 below.Table 4

Figure imgf000106_0001

 

Figure imgf000107_0001

Scheme 1 

Figure imgf000108_0001

Scheme 2 Scheme 3

,-NH2 /N Cl S

Figure imgf000108_0002

EXAMPLE 35 Analysis of Compound Binding and Inhibitory Activity against c-kit Mutants

The published crystal structure of c-kit kinase (pdb code:1 PKG) and its mutated structure were used to study the mode of binding of compound (111-1-3) (HPK56/MP-470), a benzofuranopyrimidine compound, its 2-substituted analogs, and quinazoline derivatives.

 

Figure imgf000109_0001

(Ill- 1-3)

Information about this agent

According to news published on 15 Apr 2008;  Research data build upon previous results showing that MP-470 exhibits anti-tumor activity in breast and http://www.medicalnewstoday.com/articles/150086.php”>prostate cancer cells. The fact that MP-470 in combination with erlotinib effectively suppressed the HER pathway suggests that concurrent administration of both compounds could represent a new treatment for prostate and breast cancers.

 

References

1. Kreidberg, Jordan A.; Qin, Shan. Method using a cMET inhibitor for the treatment of polycystic kidney disease. PCT Int. Appl. (2009), 43pp. CODEN: PIXXD2 WO 2009111529 A2 20090911 CAN 151:350826 AN 2009:1107388

2. Fujiwara, Masahiro; Fujita, Masayuki. Curing agents, adhesive curable compositions, articles and coating materials therefrom, and optical materials formed by using the compositions. Jpn. Kokai Tokkyo Koho (2008), 39pp. CODEN: JKXXAF JP 2008260894 A 20081030 CAN 149:472741 AN 2008:1303932

3. Janne, Pasi A.; Engelman, Jeffrey; Cantley, Lewis C. Methods for treating cancer resistant to ErbB therapeutics. PCT Int. Appl. (2008), 96pp. CODEN: PIXXD2 WO 2008127710 A2 20081023 CAN 149:486836 AN 2008:1282443

4. Nakagawa, Kiyoshi; Kurushima, Yoshiaki; Mizuma, Masahiro. Fabric with highly-expanded layer and process for production thereof. PCT Int. Appl. (2007), 44pp. CODEN: PIXXD2 WO 2007083641 A1 20070726 CAN 147:213021 AN 2007:815020

5. Mahadevan, D.; Cooke, L.; Riley, C.; Swart, R.; Simons, B.; Della Croce, K.; Wisner, L.; Iorio, M.; Shakalya, K.; Garewal, H.; Nagle, R.; Bearss, D. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene (2007), 26(27), 3909-3919. CODEN: ONCNES ISSN:0950-9232. CAN 147:226484 AN 2007:613908

6. Gong, QingJie; Han, DongYu; Wang, YuRong. Experimental determination of scheelite solubility in 4.0% NaCl solution in critical region. Yanshi Xuebao (2006), 22(12), 3052-3058. CODEN: YANXEU ISSN:1000-0569. CAN 147:34728 AN 2007:301330

7. Tokunaga, Koji; Mukai, Takashi; Kishigami, Akira. Two-component weak solvent-based coating compositions with no curing interference by dewing. Jpn. Kokai Tokkyo Koho (2005), 15 pp. CODEN: JKXXAF JP 2005239815 A 20050908 CAN 143:249850 AN 2005:979155

8. Lauer, S. J.; Shuster, J. J.; Mahoney, D. H., Jr.; Winick, N.; Toledano, S.; Munoz, L.; Kiefer, G.; Pullen, J. D.; Steuber, C. P.; Camitta, B. M. A comparison of early intensive methotrexate/mercaptopurine with early intensive alternating combination chemotherapy for high-risk B-precursor acute lymphoblastic leukemia: A pediatric oncology group phase III randomized trial. Leukemia (2001), 15(7), 1038-1045. CODEN: LEUKED ISSN:0887-6924. CAN 135:338846 AN 2001:586045

9. Sen, Ayusman; Hennis, April. Palladium (II) catalyzed polymerization of norbornene and acrylates. PCT Int. Appl. (2001), 22 pp. CODEN: PIXXD2 WO 2001021670 A1 20010329 CAN 134:252774 AN 2001:228935

10. Patel, Raman; Mallin, Dan; Saunders, Keith; Tiberio, Patrick; Andries, John. Polymer compositions containing polyolefins, polar polymers and block or graft copolymer compatibilizers and their preparation. PCT Int. Appl. (1999), 25 pp. CODEN: PIXXD2 WO 9950350 A1 19991007 CAN 131:272658 AN 1999:640932

11. Koehler, Burkhard; Imai, Seisaku; Doering, Joachim; Ruesseler, Wolfgang; Dorf, Ernst Ullrich. Mixtures of polyarylene sulfides, glass fibers, and polymaleimides with good mechanical properties. Ger. Offen. (1992), 4 pp. CODEN: GWXXBX DE 4105913 A1 19920827 CAN 118:82122 AN 1993:82122

12. Itoh, Michiya; Fuke, Kiyokazu; Kobayashi, Sachiko. Direct observation of intramolecular anthracene excimer in 1,3-dianthrylpropane. Journal of Chemical Physics (1980), 72(2), 1417-18. CODEN: JCPSA6 ISSN:0021-9606. CAN 92:155340 AN 1980:155340

13. Tomillero A; Moral M A Gateways to clinical trials. Methods and findings in experimental and clinical pharmacology (2009), 31(9), 597-633. Journal code: 7909595. ISSN:0379-0355. PubMed ID 20094643 AN 2010048694

14. Tomillero A; Moral M A Gateways to clinical trials. Methods and findings in experimental and clinical pharmacology (2009), 31(8), 541-57. Journal code: 7909595. ISSN:0379-0355. PubMed ID 19967103 AN 2009808578

15. Gorrand Jean-Marie; Doly Michel; Bacin Franck Macular pigment density assessed by directional fundus reflectance. Journal of the Optical Society of America. A, Optics, image science, and vision (2009), 26(8), 1847-54. Journal code: 9800943. ISSN:1084-7529. PubMed ID 19649122 AN 2009529589

16. Tomillero A; Moral M A Gateways to clinical trials. Methods and findings in experimental and clinical pharmacology (2009), 31(4), 263-98. Journal code: 7909595. ISSN:0379-0355. PubMed ID 19557204 AN 2009445725

 


Filed under: Uncategorized Tagged: AMUVATINIB

AbbVie Presents New Results from Studies of Investigational Oncology Compound ABT-199/GDC-0199 at the 2014 American Society of Clinical Oncology…

$
0
0

ChemSpider 2D Image | 4-(4-{[2-(4-Chlorophenyl)-4,4-dimethyl-1-cyclohexen-1-yl]methyl}-1-piperazinyl)-N-({3-nitro-4-[(tetrahydro-2H-pyran-4-ylmethyl)amino]phenyl}sulfonyl)-2-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)benzamide | C45H50ClN7O7S

ABT 199
4-(4-{[2-(4-Chlorophenyl)-4,4-dimethyl-1-cyclohexen-1-yl]methyl}-1-piperazinyl)-N-({3-nitro-4-[(tetrahydro-2H-pyran-4-ylmethyl)amino]phenyl}sulfonyl)-2-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)benzamide

1257044-40-8 [RN]

2-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)-4-(4-((2-(4-chlorophenyl)-4,4-dimethylcyclohex-1-enyl)methyl)piperazin-1-yl)-N-(3-nitro-4-((tetrahydro-2H-pyran-4-yl)methylamino)phenylsulfonyl)benzamide

4-[4-[[2-(4-chlorophenyl)-4,4-dimethylcyclohexen-1-yl]methyl]piperazin-1-yl]-N-[3-nitro-4-(oxan-4-ylmethylamino)phenyl]sulfonyl-2-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)benzamide

ABT 199

  • Molecular Formula: C45H50ClN7O7S
  • Average mass: 868.439209 Da
  • Monoisotopic mass: 867.318115 Da
  • 4-(4-{[2-(4-Chlorophenyl)-4,4-dimethyl-1-cyclohexen-1-yl]methyl}-1-piperazinyl)-N-({3-nitro-4-[(tetrahydro-2H-pyran-4-ylmethyl)amino]phenyl}sulfonyl)-2-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)benzamide

NORTH CHICAGO, Ill., May 31, 2014/NEWS.GNOM.ES/ — AbbVie (NYSE: ABBV) released interim results from a Phase Ib clinical trial of ABT-199/GDC-0199, an investigational B-cell lymphoma 2 (BCL-2) selective inhibitor, in combination with rituximab (Abstract 7013). Results showed anoverall response rate (ORR) of 84 percent, in patients with relapsed/refractory chronic lymphocytic leukemia(CLL), the most common leukemia in the UnitedStates. These results were presented at the 50thAnnual Meeting of the American Society of ClinicalOncology (ASCO), May 30 – June 3 in Chicago.

http://news.gnom.es/pr/abbvie-presents-new-results-from-studies-of-investigational-oncology-compound-abt-199gdc-0199-at-the-2014-american-society-of-clinical-oncology

 

ABT-199 is a so-called BH3-mimetic drug, which is designed to block the function of the protein Bcl 2. In 1988, it was discovered that Bcl-2 allowed leukaemia cells to become long-lived, a discovery made at the Walter and Eliza Hall Institute by Professors David Vaux, Suzanne Cory and Jerry Adams. Subsequent research led by them and other institute scientists, including Professors Andreas Strasser, David Huang, Peter Colman and Keith Watson, has explained much about how Bcl-2 and related molecules function to determine if a cell lives or dies. These discoveries have contributed to the development of a new class of drugs called BH3-mimetics that kill, and thereby rapidly remove, leukaemic cells by blocking Bcl-2. (source:http://www.wehi.edu.au).

 

Highlights of recent research using this agent

GDC-0199 (RG7601) is a novel small molecule Bcl-2 selective inhibitor designed to restore apoptosis, also known as programmed cell death, by blocking the function of a pro-survival Bcl-2 family protein. The Bcl-2 family proteins, which are expressed at high levels in many tumors, play a central role in regulating apoptosis and, consequently, are thought to impact tumor formation, tumor growth and resistance.

 

References

 1: Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DC, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park CM, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW. ABT-199, a potent and selective BCL-2
inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013 Jan 6. doi: 10.1038/nm.3048. [Epub ahead of print] PubMed PMID: 23291630.


Filed under: PHASE1, Phase2 drugs, Uncategorized Tagged: ABT 199

Which solvent should I choose ?

$
0
0

Originally posted on Developing the Process:

Today’s posting is going to cater more towards the process chemists out there.  I remember plenty of times, where I was given a procedure to work on and there were improvements to be made before it was scaled up or improvements needed to be made because there was an unfavourable facet to the reaction (such as the reagent, the solvent, etc.).  I remember having a list of accepted solvents that if I was going to improve a reaction and replace the solvent, I would consult that list.   Sometimes, you even wish that your Discovery group would have a sense of the acceptability of some solvents over others.  Don’t suggest to me to use carbon tetrachloride, benzene or (fill in the blank) in that reaction that needs to be scale-up.  I must give kudos to the colleagues at GSK for publishing this article in Green Chemistry entitled “Expanding GSK’s solvent selection…

View original 156 more words


Filed under: Uncategorized

Glenmark Pharmaceuticals inaugurates new Antibody Manufacturing Facility in La Chaux-de-Fonds, Switzerland

$
0
0

 

Glenmark Pharmaceuticals inaugurates new Antibody Manufacturing Facility in La Chaux-de-Fonds, Switzerland

• State of the art manufacturing facility for supply of clinical trial material
• With the facility Glenmark has end-to-end capabilities for the development of novel, state-of-the-art monoclonal antibodies including bi-specific antibodies
La Chaux-de-Fonds, Switzerland, June 4, 2014 – Glenmark Pharmaceuticals S.A (GPSA), a wholly owned subsidiary of Glenmark Pharmaceuticals Limited, India (GPL), announced the opening of its new cGMP compliant monoclonal antibody manufacturing facility in La Chaux-de-Fonds, Switzerland. This manufacturing facility supplements Glenmark’s existing in-house discovery and development capabilities and will supply material for clinical development.

The manufacturing facility has been designed for use of single use bioreactor systems and also houses a suite for manufacturing cell banks. The facility is fully compliant with quality, environmental and safety standards for manufacturing clinical trial material.

http://www.moneycontrol.com/stocks/stock_market/corp_notices.php?autono=813829

 http://www.finalaya.com/685643_ann/Glenmark_Pharmaceuticals_inaugurates_new_Antibody_Manufacturing_Facility_in_La_ChauxdeFonds_Switz_.aspx?S=&FD=&TD=&CT=&YR=&MON=&CMP=

Filed under: ANTIBODIES, GLENMARK, glenmark, Monoclonal antibody, Uncategorized Tagged: GLENMARK, La Chaux-de-Fonds, Monoclonal antibody, Switzerland

Rare Diseases: CurityMD, New Online Tool For Patients Searching For Medical Experts

$
0
0

Originally posted on Orphan Druganaut Blog:

CurityMD created by start-up SpeSo Health, is a new tool that uses data, statistics, and technology to connect patients with rare diseases to the appropriate information and care that is required. CurityMD is “an online platform that helps measure expertise in rare and complex conditions to help improve how patients and qualified specialists connect”. CurityMD is a search engine for rare diseases. With CurityMD, one can:

•   Find the most experienced care centers and experts, nearby or anywhere in the United States
•   Find important clinical trials, research, and new treatments
•   Find hospitals looking for patients with rare and complex conditions.

The Orphan Druganaut Blog is honored to have a chance to talk to CurityMD co-founders, Jonathan McEuen, PhD, and Rajiv Mahale.

Please provide a brief history how your start-up SpeSo Health came to be formed.

The co-founders met during our first year in the Healthcare Management MBA…

View original 1,641 more words


Filed under: Uncategorized
Viewing all 2922 articles
Browse latest View live