Quantcast
Channel: New Drug Approvals
Viewing all 2871 articles
Browse latest View live

Abiraterone acetate, アビラテロン酢酸エステル

$
0
0

Abiraterone acetate.svgChemSpider 2D Image | Abiraterone acetate | C26H33NO2

Abiraterone acetate

  • Molecular FormulaC26H33NO2
  • Average mass391.546 Da

Abiraterone, CB-7598, アビラテロン酢酸エステル

(3β)-17-(pyridin-3-yl)androsta-5,16-dien-3-yl acetate
CAS 154229-18-2
(1S,2R,5S,10R,11S,15S)-2,15-dimethyl-14-(pyridin-3-yl)tetracyclo[8.7.0.02,7.011,15]heptadeca-7,13-dien-5-yl acetate
CB-7630;CB7630;CB 7630
MFCD00934213 [MDL number]
UNII:EM5OCB9YJ6
(1S,2R,5S,10R,11S,15S)-2,15-dimethyl-14-(pyridin-3-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-7,13-dien-5-ol
  • (3β)-17-(pyridin-3-yl)androsta-5,16-dien-3-ol
  • 17-(3-Pyridyl)androsta-5,16-dien-3beta-ol

Centocor Ortho Biotech

Abiraterone is a derivative of steroidal progesterone and is an innovative drug that offers clinical benefit to patients with hormone refractory prostate cancer. Abiraterone is administered as an acetate salt prodrug because it has a higher bioavailability and less susceptible to hydrolysis than abiraterone itself. FDA approved on April 28, 2011.

Used in combination with prednisone for the treatment of metastatic, castration-resistant prostate cancer.

  • Originator The Institute of Cancer Research
  • Developer All Ireland Cooperative Oncology Research Group; Cancer Research UK; Cougar Biotechnology; Janssen Research & Development; Johnson & Johnson; UNICANCER
  • Class Androstenols; Antiandrogens; Antineoplastics; Small molecules
  • Mechanism of Action CYP17A1 protein inhibitors

Highest Development Phases

  • Marketed Prostate cancer
  • Phase II Breast cancer; Ovarian cancer
  • No development reported Congenital adrenal hyperplasia

Most Recent Events

  • 06 Jun 2018 The National Institute for Health and Clinical Excellence does not recommend abiraterone for Prostate cancer (Combination therapy, First-line therapy, Hormone refractory, Metastatic disease)
  • 06 Mar 2018 Janssen initiates a phase II trial for Prostate cancer (Combination therapy, Hormone refractory, Metastatic disease, Second-line therapy or greater) in USA (PO) (NCT03360721)
  • 01 Mar 2018 Janssen plans the phase II OPTIMABI trial in Prostate cancer (Hormone refractory, Metastatic disease) in France (PO, Tablet) (NCT03458247)
  • Abiraterone is associated with decreases in PSA levels, tumor shrinkage (as evaluated by RECIST criteria), radiographic regression of bone metastases and improvement in pain. Levels of adrenocorticotropic hormones increased up to 6-fold but this can be suppressed by dexamethasone.

FDA

NDA 202379, ZYTIGA (abiaterone acetate)

(3β)-17-(3-pyridinyl)androsta-5,16-dien-3-yl acetate

OND Division: NDA: Applicant: Stamp Date: PDUFA Goal Date: Established Name: Trade Name Dosage Form and Strength: Route of Administration: Indication: eCTD Reference for CMC Regulatory Filing Related IND Assessed by: Division of Drug Oncology Products 202-379 Centocor Ortho Biotech, Inc. 20 December, 2010 20 June, 2011 (Priority) Abiraterone Acetate ZYTIGA (proposed) Tablet – 250 mg Oral Indicated with prednisone for the treatment of metastatic (castrationresistant prostate cancer) in patients who have received prior chemotherapy containing a

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202379Orig1s000ChemR.pdf

Abiraterone acetate, the drug substance, is an acetyl ester of abiraterone. It is a pro-drug of the active metabolite abiraterone. Abiraterone acetate is converted in vivo to abiraterone which selectively inhibits the enzyme CYP17. Abiraterone acetate is designated chemically as (3β)-17- (3-pyridinyl)androsta-5,16-dien-3-yl acetate. It is a white to off-white, non-hygroscpic, crystalline powder. It is freely soluble in organic solvents like tetrahydrofuran and dichloromethane but practically insoluble in water. It shows some solubility in 0.1N HCl. It should be noted that abiraterone acetate contains a . The dissociation constant (pKa) of abiraterone acetate is 5.19. It indicates that most of the abiraterone acetate will be soluble in stomach pH and most of the drug will be absorbed in the unionized form in the intestine at higher pH. The partition coefficient (log P) value of abiraterone acetate is 5.12 indicating high lipophilicity. Based on low aqueous solubility and low permeability thru the cells in GI tract, the drug substance is considered BCS Class IV.

Abiraterone acetate, sold under the brand name Zytiga among others, is an antiandrogen medication which is used in the treatment of prostate cancer.[1] It is specifically indicated for use in conjunction with castration and prednisone for the treatment of metastaticcastration-resistant prostate cancer (mCRPC) and in the treatment of metastatic high-risk castration-sensitive prostate cancer (mCSPC).[1] It is taken by mouth once per day with food.[1]
Side effects
 of abiraterone acetate include fatiguearthralgiahypertensionnauseaedemahypokalemiahot flashesdiarrheavomitingcoughheadacheglucocorticoid deficiencymineralocorticoid excess, and hepatotoxicity among others.[1] The drug is an androgen synthesis inhibitor – specifically, a CYP17A1 inhibitor – and thereby inhibits the production of androgens like testosterone and dihydrotestosterone in the body.[1] In doing so, it prevents the effects of these hormones in the prostate gland and elsewhere in the body.[1] Abiraterone acetate is a prodrug of abiraterone.[1]Abiraterone acetate, sold under the brand name Zytiga among others, is an antiandrogen medication which is used in the treatment of prostate cancer.[1] It is specifically indicated for use in conjunction with castration and prednisone for the treatment of metastaticcastration-resistant prostate cancer (mCRPC) and in the treatment of metastatic high-risk castration-sensitive prostate cancer (mCSPC).[1] It is taken by mouth once per day with food.[1]

Abiraterone acetate was first described in 1993 and was introduced for medical use in 2011.[5][6][7] It was approved for the treatment of mCRPC in 2011 and was subsequently approved for the treatment of mCSPC in 2018.[8] The medication is marketed widely throughout the world.[9] It is not available as a generic medication.[10]

Medical uses

Prostate cancer

Abiraterone acetate is indicated for use in combination with prednisone, a corticosteroid, as a treatment for mCRPC (previously called hormone-resistant or hormone-refractory prostate cancer).[11][12][13][14] This is a form of prostate cancer that is not responding to first-line androgen deprivation therapy or treatment with androgen receptor antagonists. Abiraterone acetate has received FDA (28 April 2011), EMA (23 September 2011), MHRA (5 September 2011) and TGA (1 March 2012) approval for this indication.[11][12][13][14] In Australia it is covered by the Pharmaceutical Benefits Scheme when being used to treat castration-resistant prostate cancer and given in combination with prednisone/prednisolone (subject to the conditions that the patient is not currently receiving chemotherapy, is either resistant or intolerant of docetaxel, has a WHO performance status of <2, and his disease has not since become progressive since treatment with PBS-subsidised abiraterone acetate has commenced).[15]

Clinical effectiveness

A phase III study in subjects previously treated with docetaxel started in 2008.[16] In September 2010, an independent panel found that the interim results in patients previously treated with docetaxel were so much better compared to those treated with placebo that it was unethical to keep half the study participants on placebo, and all patients began receiving the drug. Overall survival was increased by 3.9 months in to this study (14.8 months versus 10.9 months for placebo).[17]

A placebo-controlled double-blind randomized phase III study in patients with castration-refractory prostate cancer but who had not received chemotherapy opened to accrual in April 2009.[18][19] 1,088 men received either abiraterone acetate (1000 mg daily) plus prednisone (5 mg twice daily), or placebo plus prednisone. The median radiographic progression-free survival was 16.5 months with abiraterone acetate–prednisone and 8.3 months with prednisone alone (hazard ratio (HR) = 0.53; 95% confidence interval (CI), 0.45 to 0.62; P<0.001). After a median follow-up period of 22.2 months, overall survival was better with abiraterone acetate plus prednisone (median not reached) compared to placebo plus prednisone (27.2 months); HR = 0.75; 95% CI, 0.61 to 0.93; P=0.01).[20]

Available forms

Abiraterone acetate is available in the form of 250 mg and 500 mg film-coated oral tablets and 250 mg uncoated oral tablets.[1] It is used at a dosage of 1,000 mg orally once per day with food in conjunction with castration (via GnRH analogue therapy or orchiectomy) and in combination with 5 mg prednisone orally twice per day.[1]

Contraindications

Contraindications include hypersensitivity to abiraterone acetate. Although documents state that it should not be taken by women who are or who may become pregnant,[12][21] there is no medical reason that any woman should take it. Women who are pregnant should not even touch the pills unless they are wearing gloves.[21] Other cautions include severe baseline hepatic impairmentmineralocorticoid excesscardiovascular disease including heart failure and hypertension, uncorrected hypokalemia, and adrenocorticoid insufficiency.[22]

Side effects

Side effects by frequency:[11][12][13][14][22]

Very common (>10% frequency):

Common (1-10% frequency):

Uncommon (0.1-1% frequency):

Rare (<0.1% frequency):

Overdose

Clinical experience with overdose of abiraterone acetate is limited.[1] There is no specific antidote for abiraterone acetate overdose, and treatment should consist of general supportive measures, including monitoring of cardiac and liver function.[1]

Interactions

Abiraterone acetate is a CYP3A4 substrate and hence should not be administered concurrently with strong CYP3A4 inhibitors such as ketoconazole, itraconazole, clarithromycin, atazanavir, nefazodone, saquinavir, telithromycin, ritonavir, indinavir, nelfinavir, voriconazole) or inducers such as phenytoin, carbamazepine, rifampin, rifabutin, rifapentine, phenobarbital.[22][21] It also inhibits CYP1A2CYP2C9, and CYP3A4 and likewise should not be taken concurrently with substrates of any of these enzymes that have a narrow therapeutic index.[22][21]

Pharmacology

Pharmacodynamics

Abiraterone, the active metaboliteof abiraterone acetate.

Antiandrogenic activity

Abiraterone, the active metabolite of abiraterone acetate, inhibits CYP17A1, which manifests as two enzymes, 17α-hydroxylase (IC50 = 2.5 nM) and 17,20-lyase (IC50 = 15 nM) (approximately 6-fold more selective for inhibition of 17α-hydroxylase over 17,20-lyase)[23][24] that are expressed in testicular, adrenal, and prostatic tumor tissues. CYP17A1 catalyzes two sequential reactions: (a) the conversion of pregnenolone and progesterone to their 17α-hydroxy derivatives by its 17α-hydroxylase activity, and (b) the subsequent formation of dehydroepiandrosterone (DHEA) and androstenedione, respectively, by its 17,20-lyase activity.[25] DHEA and androstenedione are androgens and precursors of testosterone. Inhibition of CYP17A1 activity by abiraterone thus decreases circulating levels of androgens such as DHEA, testosterone, and dihydrotestosterone (DHT). Abiraterone acetate, via its metabolite abiraterone, has the capacity to lower circulating testosterone levels to less than 1 ng/dL (i.e., undetectable) when added to castration.[23][26] These concentrations are considerably lower than those achieved by castration alone (~20 ng/dL).[26] The addition of abiraterone acetate to castration was found to reduce levels of DHT by 85%, DHEA by 97 to 98%, and androstenedione by 77 to 78% relative to castration alone.[26] In accordance with its antiandrogenic action, abiraterone acetate decreases the weights of the prostate glandseminal vesicles, and testes.[27]

Abiraterone also acts as a partial antagonist of the androgen receptor (AR), and as an inhibitor of the enzymes 3β-hydroxysteroid dehydrogenase (3β-HSD), CYP11B1 (steroid 11β-hydroxylase), CYP21A2 (Steroid 21-hydroxylase), and other CYP450s (e.g., CYP1A2CYP2C9, and CYP3A4).[22][28][29][30] In addition to abiraterone itself, part of the activity of the drug has been found to be due to a more potent active metaboliteδ4-abiraterone (D4A), which is formed from abiraterone by 3β-HSD.[31] D4A is an inhibitor of CYP17A1, 3β-hydroxysteroid dehydrogenase/Δ5-4 isomerase, and 5α-reductase, and has also been found to act as a competitive antagonist of the AR reportedly comparable to the potent antagonist enzalutamide.[31] However, the initial 5α-reduced metabolite of D4A, 3-keto-5α-abiraterone, is an agonist of the AR, and promotes prostate cancer progression.[32] Its formation can be blocked by the coadministration of dutasteride, a potent and selective 5α-reductase inhibitor.[32]

Estrogenic activity

There has been interest in the use of abiraterone acetate for the treatment of breast cancer due to its ability to lower estrogen levels.[33] However, abiraterone has been found to act as a direct agonist of the estrogen receptor, and induces proliferation of human breast cancer cells in vitro.[33] If abiraterone acetate is used in the treatment of breast cancer, it should be combined with an estrogen receptor antagonist like fulvestrant.[33] In spite of its antiandrogenic and estrogenic properties, abiraterone acetate does not appear to produce gynecomastia as a side effect.[34]

Other activities

Due to inhibition of glucocorticoid biosynthesis, abiraterone acetate can cause glucocorticoid deficiencymineralocorticoid excess, and associated adverse effects.[35] This is why the medication is combined with prednisone, a corticosteroid, which serves as a means of glucocorticoid replacement and prevents mineralocorticoid excess.[36]

Abiraterone acetate, along with galeterone, has been identified as an inhibitor of sulfotransferases (SULT2A1SULT2B1bSULT1E1), which are involved in the sulfation of DHEA and other endogenous steroids and compounds, with Ki values in the sub-micrmolar range.[37]

Pharmacokinetics

After oral administration, abiraterone acetate, the prodrug form in the commercial preparation, is converted into the active form, abiraterone. This conversion is likely to be esterase-mediated and not CYP-mediated. Administration with food increases absorption of the drug and thus has the potential to result in increased and highly variable exposures; the drug should be consumed on an empty stomach at least one hour before or two hours after food. The drug is highly protein bound (>99%), and is metabolised in the liver by CYP3A4 and SULT2A1 to inactive metabolites. The drug is excreted in feces (~88%) and urine (~5%), and has a terminal half-life of 12 ± 5 hours.[21]

Chemistry

Abiraterone acetate, also known as 17-(3-pyridinyl)androsta-5,16-dien-3β-ol acetate, is a synthetic androstane steroid and a derivative of androstadienol (androsta-5,16-dien-3β-ol), an endogenous androstane pheromone. It is specifically a derivative of androstadienol with a pyridine ring attached at the C17 position and an acetate ester attached to the C3β hydroxyl group. Abiraterone acetate is the C3β acetate ester of abiraterone.

History

In the early 1990s, Mike Jarman, Elaine Barrie, and Gerry Potter of the Cancer Research UK Centre for Cancer Therapeutics in the Institute of Cancer Research in London set out to develop drug treatments for prostate cancer. With the nonsteroidal androgen synthesis inhibitor ketoconazole as a model, they developed abiraterone, filing a patent in 1993 and publishing the first paper describing it the following year.[5][38] Rights for commercialization of the drug were assigned to BTG, a UK-based specialist healthcare company. BTG then licensed the product to Cougar Biotechnology, which began development of the commercial product.[39] In 2009, Cougar was acquired by Johnson & Johnson, which developed and sells the commercial product, and is conducting ongoing clinical trials to expand its clinical uses.[40]

Abiraterone acetate was approved by the United States Food and Drug Administration on April 28, 2011.[6][7] The FDA press release made reference to a phase III clinical trial in which abiraterone use was associated with a median survival of 14.8 months versus 10.9 months with placebo; the study was stopped early because of the successful outcome.[41]Abiraterone acetate was also licensed by the European Medicines Agency.[42] Until May 2012 the National Institute for Health and Clinical Excellence (NICE) did not recommend use of the drug within the NHS on cost-effectiveness grounds. This position was reversed when the manufacturer submitted revised costs.[43] The use is currently limited to men who have already received one docetaxel-containing chemotherapy regimen.[44][45]

Society and culture

Generic names

Abiraterone acetate is the generic name of the drug and its USANBANM, and JAN, while abiraterone is the INN and BAN of abiraterone, its deacetylated form.[9] Abiraterone acetate is also known by its developmental code names CB-7630 and JNJ-212082, while CB-7598 was the developmental code name of abiraterone.[9][46]

Brand names

Abiraterone acetate is marketed by Janssen Biotech (a subsidiary of Johnson & Johnson) under the brand name Zytiga.[9] In addition, Intas Pharmaceuticals markets the drug under the brand name Abiratas, Cadila Pharmaceuticals markets the drug as Abretone, and Glenmark Pharmaceuticals as Abirapro.[citation needed]

Availability

Abiraterone acetate is marketed widely throughout the world, including in the United StatesCanada, the United KingdomIreland, elsewhere in EuropeAustraliaNew ZealandLatin AmericaAsia, and Israel.[9]

Research

Abiraterone acetate is under development for the treatment of breast cancer and ovarian cancer and as of March 2018 is in phase II clinical trials for these indications.[46] It was also under investigation for the treatment of congenital adrenal hyperplasia, but no further development has been reported for this potential use.[46] An oral ultramicrosize tablet formulation of abiraterone acetate (also known as abiraterone acetate fine particle (AAFP) or submicron abiraterone acetate) with improved bioavailability is in pre-registration in the United States for the treatment of prostate cancer as of April 2018 and has the tentative brand name Yonza.[47]

PAPER

https://pubs.acs.org/doi/abs/10.1021/op500044p

Improved Procedure for Preparation of Abiraterone Acetate

Chemical Research Division, Ranbaxy Research Laboratory, Gurgaon, Haryana 122001, India
Org. Process Res. Dev.201418 (4), pp 555–558
DOI: 10.1021/op500044p
*E-mail: Mukesh.madhra@ranbaxy.com. Tel: (91-124)4011832.
Abstract Image

An improved procedure for the preparation of abiraterone acetate is described. The present process highlights reduced reaction time, isolation with acid–base treatment without involving column chromatography, multiple crystallization and is amenable to large-scale synthesis.

Abiraterone Acetate (1)

1 in 81% yield (1.8 kg). HPLC Purity: 99.72%, Assay: 98.8% (HPLC, w/w). MS: m/z = 392.7 [M + H]+. IR (KBr) (cm–1): 3047, 2936, 1735, 1244, 1035, 801, 714. 1H NMR (400 MHz, DMSO-d6): δ 8.58 (s, 1 H), 8.43–8.42 (d, 1 H), 7.76–7.74 (d, 1 H), 7.34–7.31 (dd, 1 H), 6.11 (s, 1 H), 5.38 (s, 1 H), 4.44 (m, 1H), 2.19–2.50 (m, 3H), 1.98–2.08 (m, 6H), 1.39–1.85 (m, 9H), 1.03–1.11 (m, 8H). 13C NMR (CDCl3): δ 170.4, 151.6, 147.9, 147.8, 140.0, 133.6, 132.9, 129.1, 122.9, 122.2, 73.8, 57.4, 50.2, 47.3, 38.1, 36.9, 36.7, 35.1, 31.7, 31.4, 30.3, 27.7, 21.4, 20.8, 19.2, 16.5.

https://pubs.acs.org/doi/suppl/10.1021/op500044p/suppl_file/op500044p_si_001.pdf

Abiraterone (2)

2 (2.88 kg, 72%) as a white solid. HPLC Purity: 99.87%. MS: m/z = 350.3 [M + H]+. IR (KBr) (cm–1): 3236, 3062, 3031, 2931,1596, 1065, 803. 1H NMR (400 MHz, CDCI3): δ 8.61 (s, 1 H), 8.44–8.46 (d, 1 H), 7.63–7.65 (d, 1 H), 7.20–7.23 (dd, 1 H), 5.993–5.996 (d, 1 H), 5.38–5.99 (d, 1 H), 3.48–3.54 (m, 1 H), 2.24–2.32 (m, 3H), 1.97–2.10 (m, 3H), 1.47–1.86 (m, 10H), 1.04–1.10 (s, 8H). 13C NMR (CDCl3): δ 16.58, 19.34, 20.88, 30.45, 31.52, 31.63, 31.81, 35.27, 36.71, 37.20, 42.32, 47.34, 50.37, 57.56, 71.62, 121.28, 123.03, 129.24, 132.99, 133.70, 141.21, 147.79, 147.88, 151.68
see supp info
PATENT
PATENT

The abiraterone acetate was the ester of formula (Abiraterone acetate) structure.

[0004]

Figure CN103665085AD00031

[0005] So far, the search route may abiraterone acetate ester (Abiraterone acetate) are two.

[0006] Patent W09509178, CN 102030798, WO 2006021777, 2006021777, WO2006021776, J.Med.Chem.38,2463-2471,1995, synthetic route reported in the literature like the following formula WO.

[0007]

Figure CN103665085AD00041

[0008] The route is DHEA as raw material, with an acetyl group protecting the hydroxyl group, the product obtained is then reacted with trifluoromethanesulfonic anhydride to give triflate product was finally reagent under palladium catalysis, Suzuki coupling reaction with 3-pyridyl diethyl borane, to give an ester of abiraterone acetate.

[0009] Patent GB 2282377,0PPI, 29 (I), 123-134,1997 the reported another method of synthesis.

The synthetic procedure the following formula.

[0010]

Figure CN103665085AD00042

[0011] The route is DHEA as raw material, the reaction with hydrazine hydrate, and then reacted with iodine to give the 17-iodo – androsta-5,16-diene–3beta- alcohol, and catalytic agent in the button with Li-yl-pyrazol-diethyl _3_ boron burning Suzuki coupling reaction to give abiraterone, and finally acetylated abiraterone acetate to give abiraterone acetate.

[0012] By comparing the two lines, a synthetic routes can be found with a reagent such as trifluoromethanesulfonic anhydride, 2,6-di-t-butyl-4-methylpyridine and the like are expensive, relatively high chemical costs. In comparison, two synthetic route mild reaction conditions, the reagents are cheap, and therefore have more industrialized prospects. However, according to the synthesis process reported in the literature, the route to industrial production, there are still some technical problems.

[0013] More specifically, to 17- iodo – androsta-5,16-diene–3beta_ when alcohol (2) Synthesis of abiraterone (3) as a raw material for the Suzuki coupling reaction, the solvent is tetrahydrofuran, the solvent high cost; shall reaction refluxed for 4 days, the reaction time is too long. More importantly, when the Suzuki coupling reaction, starting material 17- iodo – male left diene-5,16-ol _3beta_

(2) will react with the impurities abiraterone (3) 4, 4 impurities not removed by recrystallization, can only be purified by column chromatography. If the compound is not 4 Ex, abiraterone prepared by acetylation reaction of abiraterone acetate ester, the impurities will be converted to 4 5 impurities, the impurities by recrystallization 5 likewise not removed, only purified by column chromatography.

[0014]

Figure CN103665085AD00051

[0015] The abiraterone acetate ester synthesis, synthesis is reported abiraterone 24h the reaction with acetic anhydride and pyridine at room temperature, the reaction time is too long. The mixture was then evaporated under reduced pressure to be excess acetic anhydride and pyridine, and then crystallized from diethyl ether again, to give the final acetate abiraterone acetate was purified by column chromatography.

[0016] In summary, two synthetic routes reported in the literature of the last two long reaction time and complicated operation, product purification difficult. All this has seriously hampered the industrialization prospects abiraterone acetate esters.It is essential to two synthetic routes to optimize the improvement, in order to achieve the industrial production of abiraterone acetate ester.

Figure CN103665085AD00052

] Example 1

Preparation of [0031] 17- (3-pyrazol Li-yl) androsta-5,16-diene-_3beta_ alcohol (abiraterone) of

[0032] A 750ml NMP was added to a 3L three-necked flask, were added with stirring 50gl7_ iodo – androsta-5,16-diene–3beta- alcohol, 88 mg of bis (triphenylphosphine) palladium chloride and diethyl 19.74g yl – (3-pyridyl) borane, and finally adding 345ml 2mol / L Na2CO3 solution. Heating, holding temperature of about 70-80 ° C, TLC monitored the reaction was complete. The reaction was cooled to room temperature, the reaction solution was added 1500ml of water, stirred, filtered and washed with water. Blast drying, 26.3g abiraterone.

[0033] Example 2

[0034] Preparation and purification of abiraterone acetate ester

[0035] The abiraterone 26g 156ml dissolved in pyridine, 52 ml of acetic anhydride was added at room temperature, heating, holding temperature of about 70-80 ° C, the reaction for about 4 h, TLC monitoring of the reaction was complete. The reaction was cooled to room temperature, the ice bath, 560ml of ice water was added to the reaction mixture, the precipitated white solid was stirred 20min, filtered, washed with water. 55 ° C blast drying. The crude product was added to 26ml of ethanol was dissolved by heating to clarify. Water was added 26ml, stirred for lh. Cooled to room temperature and filtered. Blast drying. Abiraterone acetate to give the final acetate 22.lg, HPLC> 99.5%.

[0036] Example 3

Preparation of [0037] 17- (3-pyridyl) androsta-5,16-diene-_3beta_ alcohol (abiraterone) of

[0038] The IlOL NMP was added to a 3L three-necked flask, were added with stirring 7.5kgl7_ iodo – androsta-5,16-diene–3beta- alcohol, 132 g of bis (triphenylphosphine) palladium chloride and 29.6kg two ethyl – (3-pyridyl) borane and finally 500L2mol / L Na2CO3 solution. To maintain the internal temperature of about 70_80 ° C, TLC monitored the reaction was complete. The reaction was cooled to room temperature, 220L of water was added to the reaction mixture, stirred for 30min, filtered, washed with water. Blast drying, 39.2kg abiraterone.

[0039] Example 4

[0040] Preparation and purification of abiraterone acetate ester

[0041] The abiraterone 39kg dissolved in pyridine 230L, 78L of acetic anhydride was added at room temperature, heating, holding temperature of about 70-80 ° C, the reaction for about 4 h, TLC monitoring of the reaction was complete. The reaction was cooled to room temperature, the ice bath, ice water was added to the 840L reaction solution, stirred 30min, filtered, washed with water, 50_55 ° C blast drying. The crude product was added to 39L of ethanol was dissolved by heating to clarify. Water was added 39L, stirred for lh then cooled to room temperature and filtered. Blast drying. Abiraterone acetate to obtain the final ester 33.2kg, HPLC> 99.5% ο

PATENT

Abiraterone acetate [17-(3-pyridyl)-5,16-androstadien-33-acetate] is a steroid compound which inhibits selectively and efficiently the enzyme 17-ohydroxylase-C17- 20-lyase, which catalyzes the conversion of dehydroepiandrosterone and androstenedione to testosterone. The inhibition of said enzyme causes a strong decrease of testosterone levels in the patient and therefore this drug is used in the treatment of certain hormone-dependent tumors resistant to chemotherapy such as prostate cancer. This compound has the followin chemical formula:

Figure imgf000002_0001

This product was disclosed for the first time in WO 93/20097, which also provides a synthetic process for its preparation including as last step the reaction of an enol triflate with a pyridine borate by Suzuki coupling (see scheme below). However, this process is not viable in practice, mainly because of the difficulty in preparing the enol trifluorosulfonate at the 17-position 2: this step, apart from proceeding with a poor conversion and low yield, gives place to the impurity tri-unsaturated 3 in a 10% yield, which only may be removed by column chromatography. Further, the product obtained after the subsequent Suzuki coupling must be also purified by column chromatography according to the examples provided therein.

Figure imgf000003_0001

Abiraterone-acetate

The above-mentioned impurity was prevented in later processes (EP 1 781 683 y EP 1 789 432) thanks to the use of alternative bases to that previously employed (i.e. 2,5-ditert-butyl-4-methylpyridine) such as DABCO, DBU or tryethylamine. However, in the sole example described in said documents, whilst the final product is achieved without using any column chromatography, it is obtained in a global yield of scarcely 21 % and shows a purity of only 96.4%.

Figure imgf000003_0002

EP 0 721 461 proposes the use of a vinyl iodide or bromide intermediate instead of the enol triflate, as depicted in the following scheme:

Figure imgf000004_0001

However, the iodo-enol is much less reactive than the triflate in the coupling with the pyridine borane, resulting in long reaction times (48 hours – 4 days) with a part of the starting material unreacted and wherein until a 5% of a dimeric impurity is obtained, which can only be removed by purification by means of reverse phase column chromatograp

Figure imgf000004_0002

Therefore, there is still a need of developing new processes for obtaining 17-(3- pyridyl)-5,16-androstadien-33-ol and related compounds, some of which are of therapeutic interest (e.g. abiraterone acetate) which overcome all or part of the drawbacks associated to the known processes belonging to the state of the art.

PATENT

The chemical name of abiraterone acetate ⑽) -17- (3- pyridyl) – androsta-5,16-diene-3-acetate, by the oral US Centocor Ortho developed CYP17 inhibitor . As anti-cancer drugs on the market April 28, 2011 by the US Food and Drug Administration (FDA) approval, in combination with prednisone therapy with castration-resistant prostate cancer. Trade name Zyitga. Abiraterone acetate is an oral androgen synthesis inhibitors, capable of inhibiting 17a- hydroxylase / C17,20-lyase (CYP17). Clinical results show that abiraterone acetate can significantly prolong patients with advanced prostate cancer include the use of one or both docetaxel-containing chemotherapy but her condition is still deteriorating lives of patients, the risk of death by 35%, and the side effects of drugs is very small, good safety.

[0003] Currently, the synthesis of abiraterone acetate routes are mainly three: (1) dehydroepiandrosterone acetic acid as a starting material, first-butyl-4-methylpyridine 2,6_ di ( esterified by trifluoromethanesulfonic anhydride, then with diethyl under DTBMP) under catalytic bis-triphenylphosphine palladium chloride – acetate proceeded abiraterone acetate Suzuki coupling (2-pyridyl) borane the total yield of the reaction is 48.7%; short reaction step of the process, but after the first-stage reaction a lot of by-products, to be purified by column chromatography, and the double bonds can not be divided by-products, and therefore remains a need for second-stage reaction column chromatography Analysis and purified by recrystallization complicated operation; (2) DHEA as a starting material, a condensation reaction of a hydrazone with hydrazine hydrate, and the presence (TMG) in 1,1,3,3-tetramethylguanidine ene reaction with iodine to generate iodine compound 17- iodo – male left -5,16_ diene -30- alcohol, then in the catalytic bis-triphenylphosphine palladium dichloride and diethyl – (3-pyridyl ) borane was prepared by Suzuki coupling abiraterone abiraterone acetate to give finally acetylated hydroxyl prepared. The total yield of the reaction is 41.5%. This synthesis step is longer, lower yields, and since the active iodides easy to generate high polymer impurities that can not be removed by recrystallization or column chromatography, can only be purified by preparative chromatography to give A in the Suzuki coupling process Long bit acetate pure, can not meet the requirements of industrial production; (3) in the method (1) was treated with triethylamine instead of DTBMP, reduces the formation of byproducts double bond, then after the reaction the remaining starting material was recrystallized removed. This reaction increases the process steps and the purity of the final product was only 96.4%, the drug does not meet the quality standards.

Example 1

[0021] One method of synthesis of abiraterone acetate, comprising the steps of:

[0022] A, in a 100ml round bottom flask were sequentially added 0 • 95g (5mmol) of p-toluenesulfonyl chloride, 15 mL of toluene, sufficiently stirred to dissolve, to obtain X-solution, (solution cooled to 15 ° C X) at 15 ° C under a slow was added dropwise by molar ratio of 1: 2 was added 1.5mL (lOmmol) 80% hydrazine hydrate to the solution X, dropwise within 5min; 3〇min reaction was continued, white precipitate appears in the flask. TLC analysis of the reaction end point is determined. After completion of the reaction, cold water was added 3〇mllO ° C., Stirred, filtered off with suction, the filter cake was then washed with purified water 3-5 times, and dried to obtain a white crystalline p-toluene sulfonyl hydrazide billion • 82g, 86.3% yield ( literature values: yield 92%).

[0023] B, DHEA -17- Synthesis of p-toluenesulfonyl hydrazone

[0024] In a 100ml round bottom flask were sequentially added in square • 75g CMmo 1) dehydroepiandrosterone (DHEA), 25 mL of methanol, 0.81 g sufficiently stirred to dissolve the p-toluene sulfonyl hydrazide, rt (15_25 ° C), was added O.lmL 0.2 mol .L-1 sulfuric acid, 60 ° C in an oil bath at reflux for 2h, TLC analysis of the reaction end point is determined. After completion of the reaction, the solvent was largely removed by rotary evaporation, a heavy white precipitate appeared in the flask. Was added 30mL of water, filtered off with suction, the filter cake was then washed with purified water 3-5 times to remove water at one thousand bake 50 ° C, to give a white solid 1.27g i.e. -17- Dehydroepiandrosterone p-toluenesulfonyl hydrazone, yield 81.4%.

[0025] C, 17- (3- pyridyl) androsta-5,16-diene–30- _ Synthesis of alcohol

[0026] In a 100ml round bottom flask was added 0.91g (2mmol) -17- Dehydroepiandrosterone p-toluenesulfonyl hydrazone, 25mLl, 4- dioxane, 〇.27g (3 mmol of) lithium tert-butoxide, 0_012g (0.013mmol) Pd2 (dba) 3,0.023g stirred for five minutes to fully dissolve the (0_005mmol) Xphos, at room temperature, wherein Pd2 (dba) 3 were added under nitrogen, and then quickly added 0.39g (2.5mmol) 3- bromo pyridine, 95 ° C oil bath reactor 12h, TLC analysis of the reaction end point is determined. After the reaction, ice water was added 30mL0 ° C, thoroughly shaken, ethyl acetate was added 20mL of acetic acid, liquid separation, was extracted with ethyl acetate (1 〇ml each, extracted three times) and the combined organic phase was dried over anhydrous sodium sulfate (by lg / ml was added over anhydrous sodium ratio) sulfate, filtered, and the filtrate rotary evaporated to give a pale yellow solid which was recrystallized from n-hexane (20ml) to give a white solid that is 17- (3-pyridyl) – male stay -5, 16- -3P- diene alcohols, a yield of 42.6%.

[0027] D, Synthesis of abiraterone acetate

[0028] In 0.39gl7- successively added 100mL round bottom flask (3-pyridyl) – androsta-5,16-diene-fir -3 – ol, 3〇111 dagger diethyl ether, 0.15mL (0.25mmol) triethylamine amine, are hook stirring, was slowly added dropwise 0.3 mL (2mm〇l) of acetyl chloride, the reaction stirred at room temperature Jiao 3h, TLC analysis of the reaction end point is determined. The mixture was then suction filtered, the filtrate was decolorized with charcoal, rotary evaporation, to give a white solid, i.e. abiraterone acetate product yield of 80.6%.

[0029] Example 2

[0030] A, in a 100ml round bottom flask were added 1. (^ (5.311111101) p-toluenesulfonyl chloride, 15 mL of toluene, sufficiently stirred to dissolve to give the solution X, at 15 ° C was slowly added dropwise 1 • 7mL (12mmol) X 80% hydrazine hydrate to the solution in dropwise within 5min; reaction was continued for 30min, a white precipitate appeared .TLC analysis to determine the end of the reaction after the completion of the reaction flask was added 30ml 10 ° C water with stirring, suction filtered, then the filter cake. washed 3-5 times purified water, was dry, i.e., p-toluenesulfonyl hydrazide to give white crystals 0.93 g, 86.7% yield (literature: yield 92%).

[0031] B, DHEA -17- Synthesis of p-toluenesulfonyl hydrazone

[0032] successively added 0 • 97g (3mmo 1) dehydroepiandrosterone (DHEA) in a 100ml round bottom flask, 25 mL of methanol, 1 • 08g p-toluene sulfonyl hydrazide, fully dissolved with stirring at room temperature, was added O.lmL 0.2mol • L_1 sulfuric acid, 60 ° C in an oil bath at reflux for 2h, TLC analysis of the reaction end point is determined. After completion of the reaction, the solvent was largely removed by rotary evaporation, a heavy white precipitate appeared in the flask. Was added 30mL of water, filtered off with suction, the filter cake was then washed with purified water 3-5 times, 5 (TC drying under removal of water, to give a white solid 1.43g i.e. Dehydroepiandrosterone p-toluenesulfonyl hydrazone -17- yield 80.9%.

[0033] C, 17- (3- pyridyl) -30- _ male left diene -5,16-ol Synthesis

[0034] In a 100ml round bottom flask was added in 1.32g (3 mmol of) -17- Dehydroepiandrosterone p-toluenesulfonyl hydrazone, 25mLl, 4- dioxane, 0.35g (4mmol) of lithium t-butoxide, 0.012g (0.013_ol) Pd2 (dba) 3,0.023g stirring for five minutes under fully dissolved (0.005mmol) Xphos, at room temperature, wherein Pd2 (dba) 3 were added under nitrogen, and then quickly added 0.48g (3mmol) 3- bromo pyridine, 80 ° C oil bath and the reaction 19h, TLC analysis of the reaction end point is determined. After the reaction, 30mL of ice water was added, shaken well, 2〇mL ethyl acetate was added, liquid separation, was extracted with 30ml ethyl acetate (10ml each, extracted three times) and the combined organic phases were scaled lg / ml was added anhydrous dried over sodium sulfate, filtered, and the filtrate was rotary evaporated to give a pale yellow solid which was recrystallized from 20ml of n-hexane to give a white solid that is 17- (3-pyridyl) – androsta-5,16-diene–3P- alcohol, 42 • 6% yield.

[0035] D, Synthesis of abiraterone acetate

[0036] In 0.41gl7- successively added 100mL round bottom flask (3-pyridyl) -! -33- androst-5,16-diene-ol, ^ 3〇 diethyl ether, 0.2mL (0 • 3 round 〇1 ) of triethylamine, stir, slowly added dropwise 0.3mL (2mmol) of acetyl chloride, the reaction was stirred at room temperature for 3h, TLC analysis of the reaction end point is determined. The mixture was then suction filtered, the filtrate was decolorized with charcoal, rotary evaporation, to give a white solid, i.e. abiraterone acetate product yield of 81 • 2%.

[0037] Example 3

[0038] A, were added in a 100ml round-bottomed flask 1.08g (5.7mmo 1) p-toluenesulfonyl chloride, 15 mL of toluene, sufficiently stirred to dissolve to give the solution X, at 15 ° C was slowly added dropwise 1 • 8mL (13mmo 1 ) of 80% hydrazine hydrate to the solution X, dropwise within 5min; reaction was continued for 30min, a white precipitate appeared in the flask. TLC analysis of the reaction end point is determined. After completion of the reaction, water 30ml 10 ° C with stirring, filtered off with suction, the filter cake was then washed with purified water 3-5 times, and dried to obtain a white crystalline p-toluene sulfonyl hydrazide 0.94g, 85.6% (Yield literature values: yield 92%).

[0039] B, DHEA -17- Synthesis of p-toluenesulfonyl hydrazone

[0040] 1 • 18g were added in a 100ml round bottom flask (3.3 mmol) Dehydroepiandrosterone, 25 mL of methanol, 1.28 g of p-toluene sulfonyl hydrazide, fully dissolved with stirring at room temperature, was added O.lmL 0.2mol • I / a sulfate, an oil bath at reflux for 2h, TLC analysis of the reaction end point is determined. After completion of the reaction, the solvent was largely removed by rotary evaporation, a heavy white precipitate appeared in the flask. Was added 30mL of water, filtered off with suction, the filter cake was then washed with purified water 3-5 times, 5 (TC drying under removal of water, to give a white solid 1.51g i.e. Dehydroepiandrosterone p-toluenesulfonyl hydrazone -17- yield 80.9%.

[0041] C, 17- (3- pyridyl) – androst _5,16- diene synthetic alcohols -3P-

[0042] Add l_45g (3.2mmol) -17- Dehydroepiandrosterone p-toluenesulfonyl hydrazone, 25mLl, 4- dioxane, 0 • 35g in 100ml round bottom flask (4mmol) of lithium tert-butoxide, 0.012 g (0.013mmol) Pd2 (dba) 3,0.023g (0.005ramol) Xphos, fully dissolved after stirred at room temperature for five minutes, wherein Pd2 (dba) 3 were added under nitrogen, then added rapidly 0 • 60g (4mmol) 3 – bromopyridine, 120 ° C oil bath and the reaction 9h, TLC analysis of the reaction end point is determined. After the reaction, 30mL of ice water was added, shaken well, was added 20mL of ethyl acetate, separated, extracted with 30ml ethyl acetate (10ml each, extracted three times) and the combined organic phases were scaled lg / ml was added over anhydrous sodium to intervene sulfate, filtered, and the filtrate rotary evaporated to give a pale yellow solid which was recrystallized from burning 2〇ml n-hexyl, i.e. 17_ to give a white solid (3-Jie ratio piperidyl) – androst -5,16_ diene -30- alcohols, a yield of 43.1%.

[0043] D, Synthesis of abiraterone acetate

[0044] successively added in a round bottom flask i〇〇mL 0.52gl7- (3- pyridyl) -! -30- androst-5,16-diene-ol, ^ 3〇 diethyl ether, 0.25mL (0.36mmol) triethylamine, stir, slowly added dropwise 0.35 mL (2.2 mmol) of acetyl chloride, the reaction was stirred at room temperature for 3h, TLC analysis of the reaction end point is determined. The mixture was then suction filtered, the filtrate was decolorized with charcoal, rotary evaporation, to give a white solid, i.e. abiraterone acetate product yield of 81.8%.

[0045] In each of the above embodiments, the improved synthetic route abiraterone acetate to DHEA as raw materials by the condensation of p-toluenesulfonyl hydrazide, and then reacted with 3-bromopyridine coupling occurs, acetylation, etc. 3 target product was synthesized from abiraterone acetate, 43.4% overall yield.Route and the mild reaction conditions, readily available and inexpensive raw materials, low production cost.

PAPER

Pharmaceutical Chemistry Journal

Volume 50, Issue 6pp 404–406Cite as

Four-Step Synthesis of Abiraterone Acetate from Dehydroepiandrosterone

https://link.springer.com/article/10.1007/s11094-016-1459-1

Balaev, A.N., Gromyko, A.V. & Fedorov, V.E. Pharm Chem J (2016) 50: 404. https://doi.org/10.1007/s11094-016-1459-1

Syn 1

J Med Chem 1995,38(13),2463

Treatment of dehydroepiandrosterone 3-acetate (I) with triflic anhydride and 2,6-di-tert-butyl-4-methylpyridine provided the desired enol triflate (III) along with some 3,5-diene (II), which were separated by column chromatography. Subsequent coupling of triflate (III) with pyridylborane (IV) using bis(triphenylphosphine)- palladium(II) chloride as the catalyst afforded the (3-pyridyl)androstadiene (V), which after hydrolysis of the acetate ester with NaOH provided the target compound.

Abiraterone

    • Synonyms:CB-7598
    • ATC:L02BX03
  • Use:androgen biosynthesis inhibitor for treating prostate cancer
  • Chemical name:(3β)-17-(3-pyridinyl)androsta-5,16-dien-3-ol
  • Formula:C24H31NO
  • MW:349.51 g/mol
  • CAS-RN:154229-19-3

Substance Classes

Synthesis Path

Substances Referenced in Synthesis Path

CAS-RN Formula Chemical Name CAS Index Name
853-23-6 C21H30O3 dehydroepiandrosterone-3-acetate Androst-5-en-17-one, 3-(acetyloxy)-, (3β)-
89878-14-8 C9H14BN diethyl (3-pyridyl)borane Pyridine, 3-(diethylboryl)-
C26H33NO2 (3β)-acetoxy-17-(3-pyridyl)androsta-5,16-diene

Trade Names

Country Trade Name Vendor Annotation
EU Zytiga Janssen Cilag, 2011
USA Zytiga Johnson & Johnson, 2011

Formulations

  • tabs. 250 mg

References

    • Potter, G. A. et al., J. Med. Chem., (1995) 38, 2463.
    • US 5 604 213 (British Technology Group; 18.2.1997; appl. 30.9.1994; GB-prior. 31.3.1992).
    • EP 633 893 (Brit. Technology Group; 18.1.1995; appl. 15.3.1993; GB-prior. 31.3.1992).
    • WO 9 320 097 (Brit. Technology Group; 14.10.1993; appl. 15.3.1993; GB-prior. 31.3.1992).
  • large scale synthesis of acetate:

    • Potter, G. A. et al., Org. Prep. Proced. Int., (1997) 29, 123.

CLIP

Abiraterone acetate, the active ingredient of ZYTIGA is the acetyl ester of abiraterone. Abiraterone is an inhibitor of CYP17 (17α-hydroxylase/C17,20-lyase). Each ZYTIGA tablet contains either 250 mg or 500 mg of abiraterone acetate. Abiraterone acetate is designated chemically as (3β)-17-(3-pyridinyl) androsta-5,16-dien-3-yl acetate and its structure is:

ZYTIGA® (abiraterone acetate) - Structural Formula - Illustration

Abiraterone acetate is a white to off-white, non-hygroscopic, crystalline powder. Its molecular formula is C26H33NO2 and it has a molecular weight of 391.55. Abiraterone acetate is a lipophilic compound with an octanol-water partition coefficient of 5.12 (Log P) and is practically insoluble in water. The pKa of the aromatic nitrogen is 5.19.

ZYTIGA tablets are available in 500 mg film-coated tablets, 250 mg film-coated tablets and 250 mg uncoated tablets with the following inactive ingredients:

  • 500 mg film-coated tablets: colloidal silicon dioxide, croscarmellose sodium, hypromellose, lactose monohydrate, magnesium stearate, silicified microcrystalline cellulose, and sodium lauryl sulfate. The coating, Opadry® II Purple, contains iron oxide black, iron oxide red, polyethylene glycol, polyvinyl alcohol, talc, and titanium dioxide.
  • 250 mg film-coated tablets: colloidal silicon dioxide, croscarmellose sodium, lactose monohydrate, magnesium stearate, microcrystalline cellulose, povidone, and sodium lauryl sulfate. The coating, Opadry® II Beige, contains iron oxide red, iron oxide yellow, polyethylene glycol, polyvinyl alcohol, talc, and titanium dioxide.
  • 250 mg uncoated tablets: colloidal silicon dioxide, croscarmellose sodium, lactose monohydrate, magnesium stearate, microcrystalline cellulose, povidone, and sodium lauryl sulfate.

PAPER

A CONVENIENT, LARGE-SCALE SYNTHESIS OF ABIRATERONE ACETATE [3β-ACETOXY-17-(3-PYRIDYL)ANDROSTA-5,16-DIENE], A POTENTIAL NEW DRUG FOR THE TREATMENT OF PROSTATE CANCER

Organic Preparations and Procedures International , The New Journal for Organic Synthesis , Volume 29, 1997 – Issue 1

https://www.tandfonline.com/doi/abs/10.1080/00304949709355175

The key step in the previously reported’ synthesis of 5 was the palladium-catalysed crosscoupling reaction between diethyl(3-pyridy1)borane and the 17-en01 triflate derived from the 3-acetate of dehydroepiandrosterone 1. The procedure has potential drawbacks as a method for large-scale synthesis. Aside from the use of the expensive and noxious triflic anhydride, the formation of the enol triflate requires the expensive hindered base 2,6-di-tert-b~tyl-4-methylpyridine.~ Further, it was accompanied by some elimination of acetic acid to give androsta-3,5,16-trien- 17-yl triflate which required chromatographic separation from the desired product, and contributed to reducing its isolated yield from the acetate of 1 to a moderate 58%. These problems prompted consideration of an altemative steroidal precursor suitable for the cross-coupling reaction. It occurred to us that the vinyl iodide 3 might provide a viable alternative to an enol triflate in the palladium catalyzed cross-coupling step. Such steroidal vinyl iodides are easily and cheaply obtained via the corresponding 17-h~drazones.’-~ The synthesis of 3 iself from the hydrazone3 2 by oxidation with iodine in the presence of a hindered guanidine base has been optimi~ed~.~ to obtain the product on a small scale (0.13 g) in 95% yield. We were able to repeat this reaction on a large scale and obtain a similar yield of 3. The palladium catalysed cross-coupling reaction of 3 with diethyl(3-pyridy1)borane proceeded without the need to protect the 3-hydroxyl function to give 4, whereas the use of an enol triflate in the coupling reaction does not conveniently allow this option. However, coupling with the iodide was much slower, requiring 4 days at 80″ as compared with the 1 hr required when an enol triflate precursor was used.’ RO A ‘ OR Recrystallization of the crude 4 obtained by the foregoing procedure gave a product with melting point lower than that previously reported,’ and TLC revealed a less mobile contaminant that was not removed by further recrystallization. The crude product was therefore acetylated to give the crude target compound 5 contaminated with a by-product. This by-product was 6, formed from a precursor 7 present as a contaminant in crude 4. The prolonged reaction time required for the cross-coupling reaction using the vinyl iodide 3 had enabled a Heck-type reaction7 to occur between the initial product 4 and the bis(tripheny1phosphine)- palladium derivative of 3 to form 7. The very recently reported8 palladium-catalysed dimerisation of 17-i0dod’~-steroids to give 16,17′-coupled products provides a precedent for this side-reaction. Whereas column chromatography on silica-gel of crude 5 afforded pure 6, which was eluted first, compound 6 contaminated later fractions and could not be completely removed from 5 by recrystallization. However subsequent reverse phase chromatography allowed the complete separation of the now faster eluting 5 from 6, and recovery of >lo0 g of pure 5 by batchwise chromatography of the crude product. The by-product 6 was deacetylated to give 7, the contaminant present in 4 prepared by the present route. Neither of the new compounds 6 and 7 was appreciably inhibitory towards the human cytochrome P450,,, (S. E. Barrie, personal communication). The availability of pure 7 affords the option of exploring the purification of 4 prior to acetylation. However, for chromatographic purification, the greater solubilities of 5 and 6 in suitable organic solvents compared with their non-acetylated counterparts favor the present choice of purification after acetylation.

3P-Acetoxy-17-(3-pyridyl)androsta-5,16-diene ( 5) and 3~-acetoxy-16-(3~-acetoxyandrosta-5,16- dien-17-yl)-17-(3-pyridyl)androsta-5,16-diene (6).- To a stirred suspension of the product from the foregoing reaction (36.5 g, 0.104 mol) in dry pyridine (200 mL) in a 500 mL round-bottomed flask was added acetic anhydride (75 mL) and the mixture stirred at room temperature for 24 hrs. The pyridine and excess acetic anhydride was removed on a rotary evaporator, initially at water pump pressure with the water bath at 70 “, and finally under high vacuum at 80″ for 30 min. The resulting oil was dissolved in Et,O (500 mL), washed with saturated aqueous NaHCO, (2 x 200 mL), dried (N%CO,), and concentrated to an oil which crystallised on standing. The crude 5 was partly purified by preparative flash chromatography on silica gel using a 9 cm diameter column, eluting with dichloromethane. A by-product (6) eluted first and was followed by fractions variously enriched in 5. The foregoing reaction and purification procedure was carried out a total of four times, thus using a total of 146 g (0.41 8 mol) of crude 4. The dichloromethane fractions containing the least by-product were combined and concentrated. Recrystallisation from hexane afforded product (1 08 g) consisting of 5 containing 6.8% w/wof 6 as impurity as determined by analytical HPLC. The more contaminated fractions similarly afforded product (25 g) containing 21 3% w/w of 6 (we thank Dr C. P. Quarterman, Aston Molecules Ltd, Birmingham U.K. for these analyses). A pure sample of 6 (4 g) was isolated from the combined initial fractions as pale yellow crystals, mp. 269-270” (from hexane); IR 1732 cm-‘ (GO str); ‘H-NMR: 6 0.85 (s, 3, H-18′), 1.02, 1.04 (2s, 6, H-19,19′), 1.06 (s, 3, H-18), 2.034, 2.039 (2s, 6, CH,CO), 4.59 (2m, 2, H-3,3’), 5.13 (s, 1, H-16), 5.39 (dd, 2, H-6,6), 7.62 (dd, 1, Js,4 = 8.0 Hz, Js,6 = Anal. Calcd for C,,H,,NO,: C, 80.18; H, 8.73; N, 1.99. Found: C, 80.19; H, 8.78; N, 1.95

The crude 5 was purified by reverse-phase column chromatography. A solution of material from the 108 g batch (10 g) in a hot mixture of acetonitrile (200 mL) and methanol (40 mL) was allowed to cool and filtered. The filtrate was applied to a 10 cm diameter column (500 g) of LiChroprep@ RP-8 reverse-phase C, packing Art. No. 9324. The column was eluted with acetonitrile-0.05 M ammonium acetate (20: 1) with a flow rate of 25 amin and 500 mL fractions were collected and analysed by analytical HPLC (see below). Fractions 4-10 contained pure 5. After a further two fractions, the eluant was changed to acetonitrile-acetic acid (20:l) and pure 6 was completely eluted in fractions 16-19. In 3 subsequent runs using the same column, 25 g portions of the same batch of crude 5 were each dissolved in a mixture of hot acetonitrile (350 mL) and methanol (100 mL) and processed as before. Fractions 2-7 contained pure 5 and, following the change of solvent, fractions 8-12 contained 6. The four eluates containing 5 were combined and recrystallised from acetonitrile (1200 mL) to give pure 5 (57.5 g), mp. 146-148″, lit.’ mp. 144-145′, in which 6 was not detected by analytical HPLC (for procedure, see below) at the limit of detection (<0,05% w/w 6). Anal. Calcd for C,,H,,NO,: C, 79.75; H, 8.50; N, 3.58. Found: C, 79.73; H, 8.48; N, 3.62

Further material (14 g) from the 108 g batch was combined with a portion (22 g) of the more impure 25 g batch and the total of 36 g was chromatographed in one batch as above, again giving complete separation of 5 from 6. Recrystallisation from acetonitrile (600 mL) gave a further 28.5 g of 5 of purity equal to the foregoing crop of 57.5 g 5. Concentration of the combined mother liquors from these crops followed by addition of water (MeCN:&O, 12:l v/v) gave further pure 5 (17.5 g). The total recovery of pure 5 was therefore 103.5 g (36% based on 3). The spectroscopic data (NMR, IR, and MS) of the final products from this procedure were identical with those reported for the product obtained by the route previously described.’

Procedure for Analysis of Purity of Batches of 5 Using Analytical HPLC.- The eluant was acetonitrile-0.05M ammonium acetate and the flow rate 1.5 mumin. Components were monitored either by fluorescence detection (excitation wavelength hex 262 nm, emission wavelength hem 353 nm) or by UV detection (254 nm). Typical retention times were: for 5,225 sec; for 6, 1162 sec. For analysis of crystalline products, a solution (5 mg/mL) in acetonitrile was diluted 50 fold to 100 pg/mL and 100 pl of this solution was injected onto the column.

1 G. A. Potter, S. E. Barrie, M. Jarman and M. G. Rowlands, J. Med. Chem., 38,2463 (1995).

References

  1. Jump up to:a b c d e f g h i j k l m n o p q Janssen Biotech, Inc. “ZYTIGA Prescribing Information”(PDF). Horsham, PA: U.S. Food and Drug Administration.
  2. Jump up to:a b c d “Meeting Library – Meeting Library”meetinglibrary.asco.org.
  3. Jump up to:a b c d Benoist GE, Hendriks RJ, Mulders PF, Gerritsen WR, Somford DM, Schalken JA, van Oort IM, Burger DM, van Erp NP (November 2016). “Pharmacokinetic Aspects of the Two Novel Oral Drugs Used for Metastatic Castration-Resistant Prostate Cancer: Abiraterone Acetate and Enzalutamide”Clin Pharmacokinet55 (11): 1369–1380. doi:10.1007/s40262-016-0403-6PMC 5069300Freely accessiblePMID 27106175.
  4. Jump up^ Potter et al. J. Med. Chem., 1995, 38 (13), pp 2463–2471
  5. Jump up to:a b Scowcroft H (2011-09-21). “Where did abiraterone come from?”. Cancer Research UK. Retrieved 2011-09-28.
  6. Jump up to:a b “Drugs@FDA – FDA Approved Drug Products – Zytiga”http://www.fda.gov. United States Food and Drug Administration. Retrieved 4 March 2016.
  7. Jump up to:a b “FDA approves Zytiga for late-stage prostate cancer” (Press release). United States Food and Drug Administration. 2011-04-28.
  8. Jump up^ NCI Staff. “Abiraterone Approved for Earlier Use in Men with Metastatic Prostate Cancer”. U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute.
  9. Jump up to:a b c d e “Abiraterone”Drugs.com.
  10. Jump up^ “Generic Zytiga Availability”Drugs.com.
  11. Jump up to:a b c “Zytiga (abiraterone acetate) tablet [Janssen Biotech, Inc.]”DailyMed. Janssen Biotech, Inc. September 2013. Retrieved 24 January 2014.
  12. Jump up to:a b c d “Zytiga: EPAR – Product Information” (PDF). European Medicines Agency. Janssen-Cilag International N.V. 29 October 2013. Retrieved 24 January 2014.
  13. Jump up to:a b c “Zytiga 250 mg tablets – Summary of Product Characteristics”electronic Medicines Compendium. Janssen-Cilag Ltd. 21 January 2014. Retrieved 24 January 2014.
  14. Jump up to:a b c “Zytiga abiraterone acetate product information” (PDF). TGA eBusiness Services. Janssen-Cilag Pty Ltd. 1 March 2012. Retrieved 24 January 2014.
  15. Jump up^ “Pharmaceutical Benefits Scheme – Abiraterone”Pharmaceutical Benefits Scheme. Retrieved 24 January 2014.
  16. Jump up^ Clinical trial number NCT00638690 for “Abiraterone Acetate in Castration-Resistant Prostate Cancer Previously Treated With Docetaxel-Based Chemotherapy” at ClinicalTrials.gov
  17. Jump up^ de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB, Saad F, Staffurth JN, Mainwaring P, Harland S, Flaig TW, Hutson TE, Cheng T, Patterson H, Hainsworth JD, Ryan CJ, Sternberg CN, Ellard SL, Fléchon A, Saleh M, Scholz M, Efstathiou E, Zivi A, Bianchini D, Loriot Y, Chieffo N, Kheoh T, Haqq CM, Scher HI (May 2011). “Abiraterone and increased survival in metastatic prostate cancer”The New England Journal of Medicine364 (21): 1995–2005. doi:10.1056/NEJMoa1014618PMC 3471149Freely accessiblePMID 21612468.
  18. Jump up^ Clinical trial number NCT00887198 for “Abiraterone Acetate in Asymptomatic or Mildly Symptomatic Patients With Metastatic Castration-Resistant Prostate Cancer” at ClinicalTrials.gov
  19. Jump up^ “BTG and Ortho Biotech’s Prostate Cancer Trial Unblinded”. Genetic Engineering & Biotechnology News. 2010-09-10. Retrieved 2011-05-26.
  20. Jump up^ Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, Fizazi K, Mainwaring P, Piulats JM, Ng S, Carles J, Mulders PF, Basch E, Small EJ, Saad F, Schrijvers D, Van Poppel H, Mukherjee SD, Suttmann H, Gerritsen WR, Flaig TW, George DJ, Yu EY, Efstathiou E, Pantuck A, Winquist E, Higano CS, Taplin ME, Park Y, Kheoh T, Griffin T, Scher HI, Rathkopf DE (January 2013). “Abiraterone in metastatic prostate cancer without previous chemotherapy”The New England Journal of Medicine368 (2): 138–48. doi:10.1056/NEJMoa1209096PMC 3683570Freely accessiblePMID 23228172.
  21. Jump up to:a b c d e “Zytiga prescribing information” (pdf). Janssen Biotech. May 2012. Retrieved 4 March 2016.
  22. Jump up to:a b c d e “Zytiga (abiraterone) dosing, indications, interactions, adverse effects, and more”Medscape Reference. WebMD. Retrieved 24 January 2014.
  23. Jump up to:a b Neidle S (30 September 2013). Cancer Drug Design and Discovery. Academic Press. pp. 341–342. ISBN 978-0-12-397228-6.
  24. Jump up^ Fernández-Cancio, Mónica; Camats, Núria; Flück, Christa E.; Zalewski, Adam; Dick, Bernhard; Frey, Brigitte M.; Monné, Raquel; Torán, Núria; Audí, Laura (2018-04-29). “Mechanism of the Dual Activities of Human CYP17A1 and Binding to Anti-Prostate Cancer Drug Abiraterone Revealed by a Novel V366M Mutation Causing 17,20 Lyase Deficiency”Pharmaceuticals11 (2): 37. doi:10.3390/ph11020037.
  25. Jump up^ Attard G, Belldegrun AS, de Bono JS (December 2005). “Selective blockade of androgenic steroid synthesis by novel lyase inhibitors as a therapeutic strategy for treating metastatic prostate cancer”. BJU International96 (9): 1241–6. doi:10.1111/j.1464-410X.2005.05821.xPMID 16287438.
  26. Jump up to:a b c Small EJ (November 2014). “Can targeting the androgen receptor in localized prostate cancer provide insights into why men with metastatic castration-resistant prostate cancer die?”. Journal of Clinical Oncology32 (33): 3689–91. doi:10.1200/JCO.2014.57.8534PMID 25311216Abiraterone acetate is a prodrug for abiraterone, a CYP17 inhibitor, which has the capacity to lower serum testosterone levels to less than 1 ng/dL (compared with levels closer to 20 ng/dL that are achieved with conventional ADT).19 […] Relative to LHRHa alone, the addition of abiraterone resulted in an 85% decline in dihydrotestosterone (DHT) levels, a 97% to 98% decline in dehydroepiandrosterone (DHEA) levels, and a 77% to 78% decline in androstenedione levels.
  27. Jump up^ Tindall DJ, James M (20 April 2009). Androgen Action in Prostate Cancer. Springer Science & Business Media. pp. 748–. ISBN 978-0-387-69179-4.
  28. Jump up^ Yin L, Hu Q (January 2014). “CYP17 inhibitors–abiraterone, C17,20-lyase inhibitors and multi-targeting agents”. Nature Reviews. Urology11 (1): 32–42. doi:10.1038/nrurol.2013.274PMID 24276076.
  29. Jump up^ Malikova, Jana; Brixius-Anderko, Simone; Udhane, Sameer S.; Parween, Shaheena; Dick, Bernhard; Bernhardt, Rita; Pandey, Amit V. (2017). “CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, also inhibits the 21-hydroxylase activity of CYP21A2”. The Journal of Steroid Biochemistry and Molecular Biology174: 192–200. doi:10.1016/j.jsbmb.2017.09.007ISSN 1879-1220PMID 28893623.
  30. Jump up^ Udhane, Sameer S.; Dick, Bernhard; Hu, Qingzhong; Hartmann, Rolf W.; Pandey, Amit V. (2016). “Specificity of anti-prostate cancer CYP17A1 inhibitors on androgen biosynthesis”. Biochemical and Biophysical Research Communications477 (4): 1005–1010. doi:10.1016/j.bbrc.2016.07.019ISSN 1090-2104PMID 27395338.
  31. Jump up to:a b Li Z, Bishop AC, Alyamani M, Garcia JA, Dreicer R, Bunch D, Liu J, Upadhyay SK, Auchus RJ, Sharifi N (July 2015). “Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer”Nature523 (7560): 347–51. doi:10.1038/nature14406PMC 4506215Freely accessiblePMID 26030522.
  32. Jump up to:a b Li Z, Alyamani M, Li J, Rogacki K, Abazeed M, Upadhyay SK, Balk SP, Taplin ME, Auchus RJ, Sharifi N (May 2016). “Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy”. Nature533 (7604): 547–51. doi:10.1038/nature17954PMID 27225130.
  33. Jump up to:a b c Capper CP, Larios JM, Sikora MJ, Johnson MD, Rae JM (May 2016). “The CYP17A1 inhibitor abiraterone exhibits estrogen receptor agonist activity in breast cancer”. Breast Cancer Research and Treatment157 (1): 23–30. doi:10.1007/s10549-016-3774-3PMID 27083183.
  34. Jump up^ Alesini D, Iacovelli R, Palazzo A, Altavilla A, Risi E, Urbano F, Manai C, Passaro A, Magri V, Cortesi E (2013). “Multimodality treatment of gynecomastia in patients receiving antiandrogen therapy for prostate cancer in the era of abiraterone acetate and new antiandrogen molecules”. Oncology84 (2): 92–9. doi:10.1159/000343821PMID 23128186.
  35. Jump up^ Figg WD, Chau CH, Small EJ (14 September 2010). Drug Management of Prostate Cancer. Springer Science & Business Media. p. 97. ISBN 978-1-60327-829-4.
  36. Jump up^ Rosenthal L, Burchum J (17 February 2017). Lehne’s Pharmacotherapeutics for Advanced Practice Providers – E-Book. Elsevier Health Sciences. p. 936. ISBN 978-0-323-44779-9.
  37. Jump up^ Yip CK, Bansal S, Wong SY, Lau AJ (April 2018). “Identification of Galeterone and Abiraterone as Inhibitors of Dehydroepiandrosterone Sulfonation Catalyzed by Human Hepatic Cytosol, SULT2A1, SULT2B1b, and SULT1E1”. Drug Metabolism and Disposition46 (4): 470–482. doi:10.1124/dmd.117.078980PMID 29436390.
  38. Jump up^ “A new way to treat prostate cancer: The story of abiraterone”. The Institute of Cancer Research. 2012-09-10. Retrieved 2012-11-12.
  39. Jump up^ “Abiraterone Acetate (CB7630)”. Cougar Biotechnology. Archived from the original on 7 September 2008. Retrieved 2008-08-20.
  40. Jump up^ “Johnson & Johnson Announces Definitive Agreement to Acquire Cougar Biotechnology, Inc” (Press release). Cougar Biotechnology. 2009-05-11. Archived from the original on 29 May 2009. Retrieved 2009-06-03.
  41. Jump up^ “FDA Approval for Abiraterone Acetate”. U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute.
  42. Jump up^ “EMA assessment of Zytiga (abiraterone)”European Medicines Agency.
  43. Jump up^ “Prostate cancer (metastatic, castration resistant) – abiraterone (following cytoxic therapy): final appraisal determination guidance” (PDF). NICE guidance. 15 May 2012. Archived from the original (PDF) on February 19, 2013.
  44. Jump up^ “NICE technology appraisal guidance [TA259]”NICE guidance. June 2012.
  45. Jump up^ “NICE appraisal of earlier treatment with abiraterone for prostate cancer”NICE press release. 14 August 2014.
  46. Jump up to:a b c “Abiraterone acetate – Johnson & Johnson”Adis Insight.
  47. Jump up^ “Abiraterone acetate – Churchill Pharmaceuticals”Adis Insight.

External links

Abiraterone acetate
Abiraterone acetate.svg
Clinical data
Trade names Zytiga, others
Synonyms CB-7630; JNJ-212082; 17-(3-Pyridinyl)androsta-5,16-dien-3β-ol acetate
AHFS/Drugs.com Monograph
MedlinePlus a611046
License data
Pregnancy
category
  • AU: D
  • US: X (Contraindicated)
Routes of
administration
By mouth (tablets)[1]
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability Unknown, but may be 50% at most on empty stomach[3]
Protein binding Abiraterone: ~99.8% (to albumin and α1-AGp)[3][1][2]
Metabolism EsterasesCYP3A4SULT2A1[2]
Metabolites Abiraterone, others[1][3]
Elimination half-life Abiraterone: 12–24 hours[1][3]
Excretion Feces: 88%[1][2]
Urine: 5%[1][2]
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
Chemical and physical data
Formula C26H33NO2
Molar mass 391.555 g/mol
3D model (JSmol)
Melting point 144 to 145 °C (291 to 293 °F) [4]
Publication number/Priority date/Publication date/AssigneeTitle
WO1993020097A11992-03-31/1993-10-14/British Technology Group Ltd./17-substituted steroids useful in cancer treatment
EP0721461A11993-09-301996-07-17British Technology Group LimitedSynthesis of 17-(3-pyridyl) steroids
US5618807A1992-03-311997-04-08British Technology Group LimitedMethod for preparing 17-substituted steroids useful in cancer treatment
EP1781683A12004-08-242007-05-09Btg International LimitedProcess fot the preparation of 17-0-vinyl- triflates as intermediates
EP1789432A12004-08-242007-05-30Btg International LimitedMethanesulfonate salts of abiraterone-3-esters and recovery of salts of abiraterone-3-esters from solution in methyl tert-butyl ether
US20130252930A1 *2010-12-162013-09-26Biomarin Pharmaceutical Inc.Cyp11b, cyp17, and/or cyp21 inhibitors

Non-Patent

Title
A. TAKEMIYA; J.F. HARTWIG J. AM.CHEM.SOC. vol. 128, 2006, page 14800
GREEN TW ET AL.: ‘Protective Groups in Organic Synthesis’, 1999, JOHN WILEY & SONS
J. BARLUENGA ET AL. ANGEW. CHEM. INT. ED. vol. 46, 2007, pages 5587 – 90
J. BARLUENGA ET AL. CHEM. EUR. J. vol. 14, 2008, pages 4792 – 5
J. ORG. CHEM. vol. 50, 1985, pages 2438 – 43
J.AM.CHEM.SOC. vol. 130, 2008, pages 8481 – 8490
ORGANIC LETTERS vol. 12, no. 18, 2010, pages 4042 – 4045
ROBERT H. CRABTREE: ‘The Organometallic Chemistry of the Transition Metals’, 2005, WILEY-INTERSCIENCE
Publication numberPriority datePublication dateAssigneeTitle
CN103242410A *2013-05-092013-08-14苏州明锐医药科技有限公司Preparation method of abiraterone acetate
CN103387597A *2013-08-212013-11-13苏州明锐医药科技有限公司Preparation method of abiraterone acetic ester
WO2014071984A1 *2012-11-092014-05-15Synthon BvProcess for making abiraterone-3-acetate
CN104370991A *2014-11-182015-02-25仙居县力天化工有限公司Synthetic method of abiraterone acetic ester
CN104558090A *2013-10-282015-04-29重庆医药工业研究院有限责任公司Abiraterone acetate impurity and determination method thereof
EP2841444A4 *2012-04-232015-11-04Alphora Res IncProcess for preparation of 17-substituted steroids
WO2015200837A1 *2014-06-272015-12-30Fl Therapeutics LlcAbiraterone derivatives and non-covalent complexes with albumin
CN105223282A *2014-06-262016-01-06深圳海王药业有限公司High performance liquid chromatography gradient method for determining related substances of abiraterone acetate
WO2016004910A12014-07-092016-01-14Zentiva, K.S.Method of preparing abiraterone acetate of high purity applicable on industrial scale
CN105693809A *2016-01-132016-06-22华中农业大学Compound with anti-tumor activity and application of compound
US9556218B22013-06-282017-01-31Scinopharm Taiwan, Ltd.Process for the preparation of abiraterone and intermediates thereof
Family To Family Citations
CN103450313B *2013-08-212015-05-20苏州明锐医药科技有限公司Preparation method of abiraterone acetate
/////////////Abirateron-acetate-fine-particles, Aviraterone acetate, CB-7630, JNJ-212082; Zaitiga, Zaytiga, Zitiga, Zytiga, Abiraterone acetate, FDA 2011, アビラテロン酢酸エステル , Centocor Ortho Biotech
[H][C@@]12CC=C(C3=CC=CN=C3)[C@@]1(C)CC[C@@]1([H])[C@@]2([H])CC=C2C[C@@H](O)CC[C@]12C

FDA approves novel device Zephyr Endobronchial Valve (Zephyr Valve) for treating breathing difficulty from severe emphysema

$
0
0

Image result for Zephyr Endobronchial Valve, Zephyr Valve,

Depiction of the Zephyr ® endobronchial valve. Image courtesy of Pulmonx, Inc.

FDA approves novel device for treating breathing difficulty from severe emphysema
The U.S. Food and Drug Administration today approved a new device, the Zephyr Endobronchial Valve (Zephyr Valve), intended to treat breathing difficulty associated with severe emphysema.
“Treatment options are limited for people with emphysema who have severe symptoms that have not improved from taking medicines. These have included lung surgery, such as lung volume reduction or lung transplants, which may not be suitable or appropriate for all patients,” said Tina Kiang, Ph.D., acting director, Division of Anesthesiology, General Hospital, Respiratory, Infection Control and Dental Devices, in the FDA’s Center for Devices and Radiological Health. “This novel device is a less invasive treatment that expands the options available to patients.”

June 29, 2018

Release

The U.S. Food and Drug Administration today approved a new device, the Zephyr Endobronchial Valve (Zephyr Valve), intended to treat breathing difficulty associated with severe emphysema.

“Treatment options are limited for people with emphysema who have severe symptoms that have not improved from taking medicines. These have included lung surgery, such as lung volume reduction or lung transplants, which may not be suitable or appropriate for all patients,” said Tina Kiang, Ph.D., acting director, Division of Anesthesiology, General Hospital, Respiratory, Infection Control and Dental Devices, in the FDA’s Center for Devices and Radiological Health. “This novel device is a less invasive treatment that expands the options available to patients.”

The Centers for Disease Control and Prevention estimates that 3.5 million American adults have been diagnosed with emphysema. Emphysema, including severe emphysema, is a type of chronic obstructive pulmonary disease (COPD) due to damage to the air sacs (alveoli) in the lungs. Lung damage from emphysema is irreversible. The damaged alveoli can cause used air to become trapped in the lungs during exhalation. This can cause the diseased parts of the lung to get larger and put pressure on the healthy part of the lung, which makes it difficult to breathe. As a result, the body may not get the oxygen it needs.

Using a flexible bronchoscope, a doctor places Zephyr Valves, similar in size to pencil erasers, into the diseased areas of the lung airways during a procedure in a hospital setting. Design of the device is intended to prevent air from entering the damaged parts of the lung and allow trapped air and fluids to escape. During inhalation, the valves close, preventing air from entering the damaged part of the lung and during exhalation, the valves open, letting out trapped air, which is intended to relieve pressure.

The FDA reviewed data from a multi-center study of 190 patients with severe emphysema. In this study, 128 patients were treated with Zephyr Valves and medical management according to current clinical guidelines, including medications (bronchodilators, corticosteroids, antibiotics or anti-inflammatory maintenance medications) and pulmonary rehabilitation, while 62 patients (the control group) received medical management only. Results of treatment were measured by how many patients in each arm of the study had at least a 15 percent improvement in pulmonary function scores (the volume of air that can forcibly be blown out in one second after full inhalation). At one year, 47.7 percent of patients treated with Zephyr Valves experienced at least a 15 percent improvement in their pulmonary function scores, compared with 16.8 percent of patients in the control group. Adverse events observed in the study include death, air leak (pneumothorax), pneumonia, worsening of emphysema, coughing up blood, shortness of breath and chest pain.

The Zephyr Valve device is contraindicated for patients with active lung infections; those who are allergic to nitinol, nickel, titanium or silicone; active smokers and those who are not able to tolerate the bronchoscopic procedure. Patients who have had major lung procedures, heart disease, large bubbles of air trapped in the lung or who have not responded to other treatments should talk with their providers to determine if the Zephyr Valve device is appropriate for them.

The Zephyr Valve was granted Breakthrough Device designation, meaning the FDA provided intensive interaction and guidance to the company on efficient device development, to expedite evidence generation and the agency’s review of the device. To qualify for such designation, a device must provide for more effective treatment or diagnosis of a life-threatening or irreversibly debilitating disease or condition, and meet one of the following criteria: the device must represent a breakthrough technology; there must be no approved or cleared alternatives; the device must offer significant advantages over existing approved or cleared alternatives; or the availability of the device is in the best interest of patients.

The FDA reviewed the Zephyr Valve device through the premarket approval review pathway, a regulatory pathway for the highest risk class of devices.

The FDA granted approval of the Zephyr Valve device to Pulmonx Inc.

////////////fda 2018, medical devices, Zephyr Valve device, Pulmonx Inc, Breakthrough Device designation, Zephyr Endobronchial Valve,  Zephyr Valve,

BMS-986169

$
0
0

imgUNVYDSCXINFREZ-BHDDXSALSA-N.pngBDBM198728.png

BMS-986169

CAS 1801151-08-5 Related CAS : 1801151-09-6   1801151-08-5
Chemical Formula: C23H27FN2O2
Molecular Weight: 382.4794
Elemental Analysis: C, 72.23; H, 7.12; F, 4.97; N, 7.32; O, 8.37

(R)-3-((3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin-1-yl)-1-(4-methylbenzyl)pyrrolidin-2-one

(3R)-3-[(3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin-1-yl]-1-[(4-methylphenyl)methyl]pyrrolidin-2-one

BMS-986169 is a Novel, Intravenous, Glutamate N-Methyl-d-Aspartate 2B Receptor Negative Allosteric Modulator with Potential in Major Depressive Disorder. BMS-986169 showed high binding affinity for the GluN2B subunit allosteric modulatory site (Ki = 4.03-6.3 nM) and selectively inhibited GluN2B receptor function in Xenopus oocytes expressing human N-methyl-d-aspartate receptor subtypes (IC50 = 24.1 nM). BMS-986169 weakly inhibited human ether-a-go-go-related gene channel activity (IC50 = 28.4 μM) and had negligible activity in an assay panel containing 40 additional pharmacological targets.

Chemical structures of BMS-986169 and the phosphate prodrug BMS-986163.

Chemical structures of BMS-986169 and the phosphate prodrug BMS-986163. 
Image result for BMS-986169

 

PAPER

Evolution of a Scale-Up Synthesis to a Potent GluN2B Inhibitor and Its Prodrug

 Discovery Chemistry and Molecular TechnologiesBristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
 Drug Product Science & Technology, Materials Science & EngineeringBristol-Myers Squibb Research and Development, Princeton, New Jersey 08540, United States
§ Department of Discovery SynthesisBiocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.8b00120
Abstract Image

This paper describes the efficient scale-up synthesis of the potent negative allosteric glutamate N2B (GluN2B) inhibitor 1 (BMS-986169), which relies upon a stereospecific SN2 alkylation strategy and a robust process for the preparation of its phosphate prodrug 28 (BMS-986163) from parent 1 using POCl3. A deoxyfluorination reaction employing bis(2-methoxyethyl)aminosulfur trifluoride (Deoxo-Fluor) is also used to stereospecifically introduce a fluorine substituent. The optimized routes have been demonstrated to provide APIs suitable for toxicological studies in vivo.

https://pubs.acs.org/doi/suppl/10.1021/acs.oprd.8b00120/suppl_file/op8b00120_si_001.pdf

PAPER

https://pubs.acs.org/doi/abs/10.1021/acsmedchemlett.8b00080

BMS-986163, a Negative Allosteric Modulator of GluN2B with Potential Utility in Major Depressive Disorder

 Bristol-Myers Squibb Research and Development5 Research Parkway, Wallingford, Connecticut 06492, United States
 Biocon Bristol-Myers Squibb Research Center, Bangalore, India
§ Bristol-Myers Squibb Research and Development3551 Lawrenceville Road, Princeton, New Jersey 08648, United States
ACS Med. Chem. Lett.20189 (5), pp 472–477
DOI: 10.1021/acsmedchemlett.8b00080
*Phone 203-677-6701. E-mail: lawrence.marcin@bms.com.

 

Abstract Image

There is a significant unmet medical need for more efficacious and rapidly acting antidepressants. Toward this end, negative allosteric modulators of the N-methyl-d-aspartate receptor subtype GluN2B have demonstrated encouraging therapeutic potential. We report herein the discovery and preclinical profile of a water-soluble intravenous prodrug BMS-986163 (6) and its active parent molecule BMS-986169 (5), which demonstrated high binding affinity for the GluN2B allosteric site (Ki = 4.0 nM) and selective inhibition of GluN2B receptor function (IC50 = 24 nM) in cells. The conversion of prodrug 6 to parent 5 was rapid in vitro and in vivo across preclinical species. After intravenous administration, compounds 5 and 6 have exhibited robust levels of ex vivo GluN2B target engagement in rodents and antidepressant-like activity in mice. No significant off-target activity was observed for 56, or the major circulating metabolites met-1 and met-2. The prodrug BMS-986163 (6) has demonstrated an acceptable safety and toxicology profile and was selected as a preclinical candidate for further evaluation in major depressive disorder.

Image result for BMS-986169

Image result for BMS-986169

 

 

(S)-3-((3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin-1-yl)-1-(4-
methylbenzyl)pyrrolidin-2-one (compound 23) and (R)-3-((3S,4S)-3-fluoro-4-(4-
hydroxyphenyl)piperidin-1-yl)-1-(4-methylbenzyl)pyrrolidin-2-one (BMS-986169, compound
5)……https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.8b00080/suppl_file/ml8b00080_si_001.pdf

Analytical data for BMS-986169 (compound 5): LCMS (C23H27FN2O2, MW 382.2, ESAPI),
observed 383.2 m/z (M+H)+; []D20 = +6.09 (c = 1.15, MeOH); Anal. Calcd for
C23H27FN2O2 (382.21): C, 72.22; H, 7.12; N, 7.32. Found: C, 72.26; H, 7.05; N, 7.31; HRMS
(ESI) Calcd for C23H27N2O2, 383.2118. Found, 383.2129;

13C NMR (126 MHz, chloroformd)
172.4, 155.0, 137.5, 133.0, 132.8, 129.4, 128.6, 128.2, 115.6, 91.6 (d, J=173.5 Hz),
65.0, 54.5 (d, J=25.4 Hz), 48.3, 47.7 (d, J=17.3 Hz), 46.7, 43.6, 31.5, 21.1, 19.2;(500 MHz, chloroform-d) 7.23 – 7.11 (m, 5H), 6.92 (d, J=8.5 Hz, 2H), 6.18 (br. s., 1H),
4.79 – 4.55 (m, 1H), 4.57 – 4.33 (m, 2H), 3.72 (t, J=8.7 Hz, 1H), 3.46 – 3.30 (m, 1H), 3.30 –
3.09 (m, 2H), 2.82 (d, J=8.5 Hz, 1H), 2.73 – 2.56 (m, 2H), 2.49 (d, J=2.5 Hz, 1H), 2.36 (s,
3H), 2.21 – 1.98 (m, 2H), 1.87 (br. s., 2H). The corresponding 1H NMR spectrum for
compound 5 is shown below

1H NMR

 

PATENT

https://patents.google.com/patent/US9221796B2/und

InventorDalton KingLorin A. Thompson, IIIJianliang ShiSrinivasan ThangathirupathyJayakumar Sankara WarrierImadul IslamJohn E. Macor

Current Assignee Bristol-Myers Squibb Co

https://patents.google.com/patent/WO2015105772A1/und

N-Methyl-D-aspartate (NMDA) receptors are ion channels which are gated by the binding of glutamate, an excitatory neurotransmitter in the central nervous system. They are thought to play a key role in the development of a number of neurological diseases, including depression, neuropathic pain, Alzheimer’s disease, and Parkinson’s disease. Functional NMDA receptors are tetrameric structures primarily composed of two NRl and two NR2 subunits. The NR2 subunit is further subdivided into four individual subtypes: NR2A, NR2B, NR2C, and NR2D, which are differentially distributed throughout the brain. Antagonists or allosteric modulators of NMDA receptors, in particular NR2B subunit-containing channels, have been investigated as therapeutic agents for the treatment of major depressive disorder (G. Sanacora, 2008, Nature Rev. Drug Disc. 7: 426-437).

The NR2B receptor contains additional ligand binding sites in additon to that for glutamate. Non-selective NMDA antagonists such as Ketamine are pore blockers, interfering with the transport of Ca++ through the channel. Ketamine has demonstrated rapid and enduring antidepressant properties in human clinical trials as an i.v. drug. Additionally, efficacy was maintained with repeated, intermittent infusions of Ketamine (Zarate et al., 2006, Arch. Gen. Psychiatry 63: 856-864). This class of drugs, though, has limited therapeutic value because of its CNS side effects, including dissociative effects.

An allosteric, non-competitive binding site has also been identified in the N-terminal domain of NR2B. Agents which bind selectively at this site, such as

Traxoprodil, exhibited a sustained antidepressant response and improved side effect profile in human clinical trials as an i.v. drug (Preskorn et al., 2008, J. Clin.

PsychopharmacoL, 28: 631-637, and F. S. Menniti, et al, 1998, CNS Drug Reviews, 4, 4, 307-322). However, development of drugs from this class has been hindered by low bioavailability, poor pharmacokinetics, and lack of selectivity against other pharmacological targets including the hERG ion channel. Blockade of the hERG ion channel can lead to cardiac arrythmias, including the potentially fatal Torsades de pointe, thus selectivity against this channel is critical. Thus, in the treatment of major depressive disorder, there remains an unmet clinical need for the development of effective NR2B-selective negative allosteric modulators which have a favorable tolerability profile.

NR2B receptor antagonists have been disclosed in PCT publication WO 2009/006437.

The invention provides technical advantages, for example, the compounds are novel and are ligands for the NR2B receptor and may be useful for the treatment of various disorders of the central nervous system. Additionally, the compounds provide advantages for pharmaceutical uses, for example, with regard to one or more of their mechanism of action, binding, inhibition efficacy, target selectivity, solubility, safety profiles, or bioavailability.

Synthetic Scheme 1

The l-phenyl/benzyl-3-bromo-pyrrolidinones/piperidinones V may be reacted with (4-oxy-phenyl)cyclic amines VI in the presence of base to produce protected products VII, which may be subjected to cleavage conditions appropriate for the protecting group (PGi) to generate final products I, which may be separated into individual enantiomers/diastereomers I*, as shown in synthetic scheme 2.

Synthetic Scheme 2

I I*

Compounds la may be prepared by condensing l-phenyl/benzyl-3-bromo-pyrroli-dinones/piperidinones V with substituted 4(4-oxyphenyl)piperidines Vllla-c to generate protected intermediates IX, which may be subjected to cleavage conditions appropriate for the protecting group (PGi) to generate final products la, which may be separated into individual enantiomers/diastereomers la*, as shown in synthetic scheme 3.

Synthetic Scheme 3

The 4(4-oxyphenyl)piperidines Vllla-c may be synthesized in turn by a sequence starting with a protected tetrahydropiperidine X, which can be hydroxylated via hydroboration/oxidation to give the protected hydroxypiperidine XI, which may be either directly transformed into the protected fluoropiperidine XII by treatment with DAST or oxidized into the protected 3-oxopiperidine XIII, which may be further transformed into protected 3,3-difluoropiperidines XIV via treatment with DAST. XI, XII, and XIV may be transformed into Villa, Vlllb, and VIIIc, respectively, by employing cleaving conditions appropriate for the protecting group (PG2), as shown in synthetic scheme 3 a.

S nthetic scheme 3 a

Chiral

Cleavage Individual enantiomers/

G2P-N diastereomers

separation

conditions

OH 
Villa*

Villa

XI

Chiral

Cleavage Individual enantiomers/

HN

G2P-N diastereomers

%_\J> PQ separation

PG1 conditions

R F

F Vlllb*

Vlllb

XII

Chiral

Individual enantiomers/

G2P- diastereomers separation

Vlllc*

For tetrahydropyridines X which are not commercially available may be synthesized by coupling protected bromophenols XV with protected unsaturated

piperidineboronic acids XVI, as shown in synthetic scheme 4a.

Synthetic scheme 4a:

For tetrahydropyridines X which are not commercially available may be synthesized by adding the anion generated from protected bromophenols XV to a protected 4-piperidinone XVII to yield 4-phenyl-4-piperidinol XVIII, which may be dehydrated under acid conditions to yield the desired X, as shown in synthetic scheme 4b.

Synthetic scheme 4b:

l-Phenyl/benzyl-3-bromo-pyrroli-dinones/piperidinones V may be condensed with isolated individual enantiomers VIIIa-c*, which results in diastereomers 1- phenyl/benzyl-3-bromo-pyrroli-dinones/piperidinones IX*, which may be deprotected and separated to give final products la*, as shown in scheme 5.

Alternatively, the backbone scaffold may be synthesized by condensing 1- phenyl/benzyl-3-bromo-pyrroli-dinones/piperidinones V with hydroxypiperidines Villa to yield the protected 3-fluoropiperidines IXa, which may themselves be converted to the protected 3-fluoropiperidines IXb or oxidized to the ketones XIX, which may be converted to the 3,3-difluoropiperidines Ixc, as shown in scheme 6. The final compounds can then be isolated after the deprotection of IXa-c.

Scheme 6

Example 46, P-1 Example 46, P-2

(S)-3-((3S,4S)-3-Fluoro-4-(4-hydroxyphenyl)piperidin-l-yl)-l-(4-methylbenzyl)pyrrolidin-2-one and (R)-3-((3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin-l-yl)-l-(4-methylbenzyl)pyrrolidin-2-one.

Example 46, P-3 Example 46, P-4

Step A. (±)-rel-(3S,4S)- 1 -benzyl-4-(4-methoxyphenyl)piperidin-3-ol.

To a suspension of sodium tetrahydroborate (2.7 g, 72 mmol) in THF (200 mL) at 0 °C under a nitrogen atmosphere was added dropwise boron trifluoride etherate (8.8 mL, 70 mmol) and the resulting mixture was stirred for 30 minutes. Then 1-benzyl- 4-(4-methoxyphenyl)-l,2,3,6-tetrahydropyridine (10 g, 36 mmol, from S. Halazy et al WO 97/28140 (8/7/97)) dissolved in 100 mL of tetrahydrofuran was added. The mixture was allowed to warm to rt and stirred for 2 h. The reaction was then quenched by the dropwise addition of 100 mL of water. Next were added

sequentially 100 mL of ethanol, 100 mL of a 10% aqueous sodium hydroxide solution, and 30%> hydrogen peroxide (18 mL, 180 mmol) and the mixture was stirred at reflux temperature overnight. The reaction mixture was then allowed to cool, diluted with saturated aqueous ammonium chloride (200 mL), and extracted with ethyl acetate (500 mL). The organic layer was dried over Na2S04, filtered, and evaporated under reduced pressure to give (±)-rel-(3S,4S)- 1 -benzyl-4-(4-methoxyphenyl)piperidin-3-ol (8.5 g, 24.6 mmol, 69%> yield) which was used without further purification. LCMS (Method K) RT 1.99 min; m/z 298.0 (M+H+).

Step B. (±)-re -(3S,4S)-4-(4-methoxyphenyl)piperidin-3-ol.

To a solution of (±)-re/-(35′,45)-l-benzyl-4-(4-methoxyphenyl)piperidin-3-ol (9 g, 30 mmol) in methanol (150 mL) was added 10 % Pd/C (4.8 g) and the reaction mixture was stirred overnight under a hydrogen atmosphere. The catalyst was then removed by filtration through Celite and the solvent was evaporated under reduced pressure to give (±)-re/-(3S,4S)-4-(4-methoxyphenyl)piperidin-3-ol (5.1 g, 24.6 mmol, 81% yield) which was used without further purification. 1H NMR (400 MHz, DMSO-de) δ ppm 7.10 – 7.15 (m, 2 H) 6.80 – 6.86 (m, 2 H) 4.30 (d, J=5.27 Hz, 1 H) 3.37 – 3.43 (m, 1 H) 3.04 (dd, J=11.58, 4.36 Hz, 1 H) 2.86 (d, J=12.17 Hz, 1 H) 2.43 (td, J=12.09, 2.67 Hz, 1 H) 2.22 – 2.35 (m, 2 H) 1.57 – 1.63 (m, 1 H) 1.43 – 1.54 (m, 1 H).

To a solution of (±)-re/-(3S,4S)-4-(4-methoxyphenyl)piperidin-3-ol (4.5 g, 21.7 mmol) in DCM (150 mL) at -10°C under nitrogen was added a 1 M solution of boron tribromide in DCM (109 mL, 109 mmol). The reaction mixture was allowed to warm to rt, stired for 2 h, and then rechilled to 0 °C and quenched by the addition of a saturated aqueous sodium bicarbonate solution (300 mL). The aqueous layer was washed with 250 mL of DCM and then to it was added 200 mL 10% aqueous NaOH, followed by 9.5 g (43.5 mmol) of di-t-butyl dicarbonate and the resulting mixture was stirred for an additional 2 h. The mixture was then extracted with 200 mL ethyl acetate and the organic layer was separated, dried over Na2S04,filtered, and evaporated under reduced pressure to (±)-re/-(35′,45)-tert-butyl 4-(4-(tert-butoxycarbonyloxy)phenyl)-3-hydroxypiperidine-l-carboxylate (6.5 g, 12 mmol, 56 % yield) which was used without further purification. LCMS (Method K) RT 2.33 min, m/z 282 (M+H+ -2 t-butyl), 370; 1H NMR (400 MHz, DMSO-d6) δ ppm 7.27 (d, J=8.66 Hz, 2 H) 7.08 (d, J=8.66 Hz, 2 H) 4.85 (d, J=5.65 Hz, 1 H) 4.13 (d, J=8.41 Hz, 1 H) 3.97 (d, J=10.48 Hz, 1 H) 3.45 (tt, J=10.27, 5.19 Hz, 1 H) 1.67 (d, J=3.39 Hz, 1 H) 1.50 – 1.59 (m, 1 H) 1.49 (s, 11 H).

Step D. (±)-re/-(35′,45)-tert-butyl 3-hydroxy-4-(4-hydroxyphenyl)piperidine-l-carboxylate.

To a solution of (±)-re/-(35′,45)-tert-butyl 4-(4-(tert-butoxycarbonyloxy)phenyl)-3-hydroxypiperidine-l-carboxylate (6.5 g, 16.5 mmol) in 100 mL of methanol was added 11.42 g of potassium carbonate (83 mmol) and the reaction mixture was stirred at rt for 5 h. The organic solvent was removed under reduced pressure and the residue was partitioned between IN HC1 (300 mL) and ethyl acetate (300 mL). The layers were separated and the organic layer was dried over Na2S04 and evaporated under reduced pressure to give (±)-re/-(35′,45)-tert-butyl 3-hydroxy-4-(4-hydroxyphenyl)piperidine-l-carboxylate (5 g, 15 mmol, 92 % yield) which was used without further purification. LCMS (method F) RT 1.85 min, m/z 238 (M+H+ – 1-butyl), 279 (M+H+ – t-butyl+CH3CN), 1H NMR (400 MHz, DMSO-d6) δ ppm 7.01 (d, J=8.53 Hz, 2 H) 6.66 (d, J=8.53 Hz, 2 H) 4.70 (d, J=5.02 Hz, 1 H) 4.09 (br. s., 1 H) 3.94 (d, J=11.55 Hz, 1 H) 3.35 – 3.41 (m, 1 H) 2.66 – 2.77 (m, 1 H) 2.29 – 2.39 (m, 1 H) 1.63 (dd, J=13.30, 3.26 Hz, 1 H) 1.44 – 1.52 (m, 1 H) 1.42 (s, 9 H).

Step E. (3S,4S)-tert-Butyl 3 -hydroxy-4-(4-hydroxyphenyl)piperidine-l -carboxylate and (3R, -tert-butyl 3-hydroxy-4-(4-hydroxyphenyl)piperidine-l-carboxylate.

E-1 E-2

(±)-rel-(3S,4S)-tert-Butyl 3-hydroxy-4-(4-hydroxyphenyl)piperidine- 1 -carboxylate (5 g, 17 mmol, from step D) was subjected to chiral SFC separation (method C-5) to yield enantiomers E-1 (1.9 g, 6.48 mmol, 38.0 % yield) and E-2 (2.4 g, 8.18 mmol, 48.0 % yield). Data for E-1 : chiral HPLC (method A5 ) retention time 3.42 min. Data for E-2: chiral HPLC (method A5) retention time 4.2 min.

Step F. (3R,4R)-tert-Butyl 4-(4-(benzyloxy)phenyl)-3-hydroxypiperidine-l-carboxylate.

A mixture of (3R,4R)-tert-butyl 3-hydroxy-4-(4-hydroxyphenyl)piperidine-l-carboxylate (620 mg, 2.1 mmol, E-2 from step E), potassium carbonate (584 mg, 4.2 mmol), and benzyl bromide (0.25 mL, 2.1 mmol) in DMF (5 mL) was stirred at rt for 16 h. The solvent was removed by evaporation and the residue was treated with 50 mL of water. The aqueous mixture was then extracted 4 times with 50 mL of chloroform. The combined organic phases were dried over anhydous Na2S04, filtered, and evaporated to yield 750 mg of (3R,4R)-tert-butyl 4-(4-(benzyloxy)phenyl)-3-hydroxypiperidine-l -carboxylate which was used without further purification. LCMS (method F) RT 2.28 min, m/z = 310 (M+H+ – t-butyl -water), 328 (M+H+ -t-butyl).

Step G. (3i?,4i?)-4-(4-(Benzyloxy)phenyl)piperidin-3-ol hydrochloride.

A mixture of (3R,4R)-tert-butyl 4-(4-(benzyloxy)phenyl)-3-hydroxypiperidine-1-carboxylate (750 mg, 2 mmol), dioxane (4 mL) and 4.9 mL of 4 M HCI in dioxane was stirred at rt for 2h. The reaction was then evaporated to dryness to yield 550 mg of (3i?,4i?)-4-(4-(Benzyloxy)phenyl)piperidin-3-ol hydrochloride which was used without further purification. LCMS (method J) RT 0.70 min, m/z 284 (M+H+).

Step H. 3-((3i?,4i?)-4-(4-(Benzyloxy)phenyl)-3-hydroxypiperidin-l -yl)- 1 -(4-methylbenzyl)pyrrolidin-2-one .

A mixture of 3-bromo-l-(4-methylbenzyl)pyrrolidin-2-one (Intermediate 2, 220 mg, 0.82 mmol), (3i?,4i?)-4-(4-(benzyloxy)phenyl)piperidin-3-ol hydrochloride (262 mg, 0.82 mmol, from step G) and triethylamine (11 mL, 8.2 mmol) was stirred at 60 °C for lh, 80 °C for 1 h, 100 °C for 1 h and 120 °C for 1 h. The reaction mixture was then allowed to cool, diluted with 40 mL of water and extracted four times with 50 mL of chloroform. The combined organic layers were washed with 60 mL brine, dried over anhydrous sodium sulfate, filtered, and evaporated to yield 382 mg of 3-((3 ?,4i?)-4-(4-(benzyloxy)phenyl)-3-hydroxypiperidin- 1 -yl)- 1 -(4-methylbenzyl)pyrrolidin-2-one which was used without further purification. LCMS (method J) (main component of a mixture) RT 2.23 min, m/z 471 (M+H+).

Step I. 3-((3R, 4R)-4-(4-(Benzyloxy)phenyl)-3-fluoropiperidin- 1 -yl)- 1 -(4-methylbenzyl)pyrrolidin-2-one .

A solution of 3-(-4-(4-(benzyloxy)phenyl)-3-hydroxypiperidin-l-yl)-l-(4-methylbenzyl)pyrrolidin-2-one (382 mg, 0.81 mmol) in DCM (5 mL) cooled to 0 °C was treated dropwise with DAST (0.32 mL, 2.4 mmol) over 3 min. The reaction mixture was then allowed to warm to rt and was stirred for 2 h. The reaction was then quenched with 50 mL of 10% aqueous sodium bicarbonate solution and extracted 4 times with 40 mL of DCM. The combined organic layers were washed with 50 mL of brine, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum to yield 382 mg of 3-((3i?,4i?)-4-(4-(benzyloxy)phenyl)-3-fluoropiperidin-l-yl)-l-(4-methylbenzyl)pyrrolidin-2-one as a mixture of two diastereomers and rearrangement products which was used without further purification. LCMS (method J) (main component of a mixture) RT 0.9 min, m/z 473 (M+H+).

Step J. 3-((3i?,4i?)-3-Fluoro-4-(4-hydroxyphenyl)piperidin- 1 -yl)-l -(4-methylbenzyl)pyrrolidin-2-one .

A mixture of 3-((Ji?,4i?)-(4-(4-(benzyloxy)phenyl)-3-fluoropiperidin-l-yl)-l-(4-methylbenzyl)pyrrolidin-2-one (382 mg, 0.81 mmol) and methanol (4 mL) was flushed with nitrogen, followed by the addition of 172 mg of 10% Pd/C. Then the mixture was stirred at rt overnight under 25-99 psi hydrogen pressure. The reaction was then transferred to a 100 mL autoclave and stirred at 7 kg/cm2 hydrogen pressure for 4 days. The catalyst was removed by filtration through Celite and the solvent was evaporated off. The crude product was subjected to HPLC purification (method B) to yield 77.3 mg 3-((Ji?,4i?)-3-fluoro-4-(4-hydroxyphenyl)-piperidin-l-yl)-l-(4-methylbenzyl)pyrrolidin-2-one (diastereomeric pair) LCMS (method Q) RT 1.15 min, m/z 383.0 (M+H+).

Step K. (5)-3-((3i?,4i?)-3-Fluoro-4-(4-hydroxyphenyl)piperidin- 1 -yl>

methylbenzyl)pyrrolidin-2-one and (i?)-3-((3i?,4i?)-3-fluoro-4-(4-hydroxyphenyl)piperidin- 1 -yl)- 1 -(4-methylbenzyl)pyrrolidin-2-one.

The diastereomeric mixture from step J was separated by SFC method C-7 to yield homochiral Examples 46 P-l (29.3 mg) and P-2 (32.8 mg). Data for P-l (S)-3-((3R, 4R)-3 -fluoro-4-(4-hydroxyphenyl)piperidin- 1 -yl)- 1 -(4-methylbenzyl)pyrrolidin-2-one: LCMS (method F) RT 2.10 min, m/z 383.2 (M+H+), 405.2 (M+Na+); HPLC (method B) RT 8.24 min (98.8% AP); HPLC (method C) RT 6.52 min (99.1% AP); Chiral HPLC (method C-6) RT 4.1 min; 1H NMR (400 MHz, methanol-d4) δ ppm 1.76 – 1.86 (m, 2 H) 2.07 (d, J=8.53 Hz, 1 H) 2.13 – 2.21 (m, 1 H) 2.34 (s, 3 H) 2.43 (s, 0 H) 2.55 – 2.60 (m, 1 H) 2.65 – 2.70 (m, 1 H) 2.75 (br. s., 1 H) 3.20 – 3.30 (m, 2 H) 3.38 – 3.45 (m, 1 H) 3.70 (t, J=8.78 Hz, 1 H) 4.44 (t, J=79.81 Hz, 3 H) 4.63 – 4.71 (m, 1 H) 6.70 – 6.80 (m, 2 H) 7.07 – 7.15 (m, 2 H) 7.07 – 7.12 (m, 1 H) 7.13 – 7.22 (m, 4 H); 19F NMR δ ppm -184.171. Data for P-2: (R)-3-((3R,4R)-3-fluoro-4-(4-hydroxyphenyl)piperidin- 1 -yl)- 1 -(4-methylbenzyl)pyrrolidin-2-one: LCMS (method F) RT 2.10 min, m/z 383.2 (M+H+), 405.2 (M+Na+); HPLC (method B) RT 8.29 min (99.7% AP); HPLC (method C) RT 6.52 min (99.8% AP); Chiral HPLC (method C-6) RT 6.92 min; 1H NMR (400 MHz, methanol-d4) δ ppm 1.80 – 1.90 (m, 2 H) 2.07 (d, J=8.03 Hz, 1 H) 2.19 (s, 1 H) 2.34 (s, 3 H) 2.41 – 2.48 (m, 1 H) 2.66 (d, J=4.52 Hz, 2 H) 2.95 – 3.03 (m, 1 H) 3.10 – 3.18 (m, 1 H) 3.20 – 3.30 (m, 2 H) 3.68 – 3.78 (m, 1 H) 4.38 (s, 1 H) 4.51 (d, J=14.56 Hz, 2 H) 6.70 – 6.80 (m, 2 H) 7.05 – 7.13 (m, 2 H) 7.13 – 7.22 (m, 4 H); 19F NMR δ ppm -184.311.

(3S,4S)-tert-Butyl 3-fluoro-4-(4-hydroxyphenyl)piperidine-l-carboxylate.

To a solution of (3S,4S)-tert-butyl 3-hydroxy-4-(4-hydroxyphenyl)piperidine-l-carboxylate (400 mg, 1.36 mmol, the first eluting enantiomer E-l from step E) in DCM (5 mL) cooled to 0 °C was added dropwise DAST (0.54 mL, 4.1 mmol) over 10 min. The mixture was allowed to warm up to rt and was stirred for 2h. The reaction was slowly quenched with 50 mL of a 10%> aqueous sodium bicarbonate solution and extracted four times with 50 mL of DCM. The combined organic layerss were washed with 75 mL of brine, dried, and concentrated under vacuum to yield 390 mg of {3S,4S)-tert-bvXy\ 3-fluoro-4-(4-hydroxyphenyl)piperidine-l-

carboxylate which was used without further purification. LCMS (Method Q) RT 0.92 min, m z 240.1(M+H+).

Step M. 4-((3S’,4S)-3-Fluoropi ridin-4-yl)phenol hydrochloride.

A mixture of (3S,4S)-tert-butyl 3-fluoro-4-(4-hydroxyphenyl)piperidine-l-carboxylate (390 mg, 1.3 mmol) and 4M HC1 in dioxane (3.3 mL, 13.2 mmol) in dioxane (4 mL) was stirred at rt for 2 hr. It was then concentrated to dryness, washed with 10 mL of 5% DCM/diethyl ether mixture and the solid was isolated by filtration. Yield: 260 mg of 4-((J£4S)-3-fluoropiperidin-4-yl)phenol hydrochloride; LCMS

(method Q) RT 0.46 min, mz 196.1(M+H+) 1H NMR (400 MHz, DMSO-d6) δ = 9.57 (br. s., 4 H), 8.92 – 8.68 (m, 1 H), 7.14 (d, J= 8.5 Hz, 1 H), 7.06 (d, J= 8.5 Hz, 2 H), 6.82 – 6.73 (m, 2 H), 5.07 – 4.85 (m, 1 H), 3.77 – 3.36 (m, 9 H), 3.32 – 3.22 (m, 2 H), 3.13 – 2.85 (m, 5 H), 2.06 – 1.88 (m, H).

Step N. 3-((3S,4S)-3-Fluoro-4-(4-hydroxyphenyl)piperidin- 1 -yl)- 1 -(4-methylbenzyl)pyrrolidin-2-one.

A mixture of 3-bromo-l-(4-methylbenzyl)pyrrolidin-2-one (200 mg, 0.75 mmol), triethylamine (0.52 mL, 3.7 mmol) and 4-((3S,4S)-3-fluoropiperidin-4-yl)phenol hydrochloride (173 mg, 0.75 mmol) in DMF (3 mL) was heated to 120 °C in a microwave reactor for 1.5 h. The mixture was allowed to cool and was then mixed with 60 mL water and extracted 5 times with 40 mL of DCM. The combined organic extracts were washed with 80 mL of brine, dried over anhydrous sodium sulfate, filtered, and evaporated to give 265 mg of 3-((3 4S)-3-fluoro-4-(4-hydroxy-phenyl)piperidin-l-yl)-l-(4-methylbenzyl)pyrrolidin-2-one as a mixture of 2 diastereoisomers. LCMS (method P) RT 0.92 min m/z 383.4 (M+H+).

Step O. (5)-3-((3lS,45)-3-Fluoro-4-(4-hydroxyphenyl)piperidin- 1 -yl)- 1 -(4-methylbenzyl)pyrrolidin-2-one and (i?)-3-((35,,45)-3-fluoro-4-(4-hydroxyphenyl)piperidin- 1 -yl)- 1 -(4-methylbenzyl)pyrrolidin-2-one.

A portion of the diasteromer mixture from step N (130 mg) was subjected to chiral purification via SFC (method C-7) to give homochiral Examples 46 P-3 (37.7 mg) and P-4 (60.7 mg). Data for P-3 (S)-3-((3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin- 1 -yl)- 1 -(4-methylbenzyl)pyrrolidin-2-one: LCMS (Method F) RT = 2.10 min, m/z 383.2 (M+H+); HPLC (Method C) RT 6.54 min, (Method D) RT 8.20 min; chiral HPLC (method C-6) RT 3.42 min;1H NMR (400 MHz, methanol-d4) δ ppm 1.76 – 1.86 (m, 2 H) 2.06 (d, J=8.53 Hz, 1 H) 2.10 – 2.21 (m, 1 H) 2.34 (s, 3 H) 2.40 – 2.48 (m, 1 H) 2.53 – 2.60 (m, 1 H) 2.61 – 2.70 (m, 2 H) 2.95 -3.01 (m, 1 H) 3.01 (s, 2 H) 3.10 – 3.16 (m, 1 H) 3.18 – 3.28 (m, 2 H) 3.72 (s, 1 H) 4.35 – 4.41 (m, 1 H) 4.46 – 4.70 (m, 2 H) 6.72 – 6.80 (m, 2 H) 7.05 – 7.23 (m, 6 H). Data for P-4 (R)-3-((3S,4S)-3-fiuoro-4-(4-hydroxyphenyl)piperidin-l-yl)-l-(4-methylbenzyl)pyrrolidin-2-one: LCMS (Method F) RT 2.11 min, m/z 383.2 (M+H+);; HPLC (Method C) RT 6.50 min, (Method D) RT 8.21 min; chiral HPLC (method C-6) RT 6.31 min; 1H NMR (400 MHz, methanol-d4) δ ppm 1.81 (dd, J=7.28, 2.76 Hz, 2 H) 2.06 (d, J=9.04 Hz, 2 H) 2.33 (s, 3 H) 2.43 (s, 1 H) 2.55 (br s, 1 H) 2.66 (d, J=40.16 Hz, 2 H) 2.75 – 2.80 (m, 1 H) 2.96 – 3.10 (m, 2 H) 3.20 – 3.28 (m, 2 H) 3.41 (d, J=5.52 Hz, 1 H) 3.66 – 3.75 (m, 1 H) 4.31 – 4.41 (m, 1 H) 4.46 – 4.71 (m, 2 H) 6.76 (d, J=8.53 Hz, 2 H) 7.05 – 7.23 (m, 6 H).

Example 48 (Peak 1, Peak 2, Peak 3, Peak 4)

(S)-l-(4-fluorobenzyl)-3-((3S,4S)-3-hydroxy-4-(4-methoxyphenyl)piperidin-l- yl)pyrrolidin-2-one, (S)-l-(4-fluorobenzyl)-3-((3R,4R)-3-hydroxy-4-(4- methoxyphenyl)piperidin-l-yl)pyrrolidin-2-one, (R)-l-(4-fluorobenzyl)-3-((3S,4S)-3- hydroxy-4-(4-methoxyphenyl)piperidin-l-yl)pyrrolidin-2-one, and (R)-l-(4- fluorobenzyl)-3-((3RAR)-3-hydroxy-4-(4-methoxyphenyl)piperidin-l-yl)pyrrolidin-2- one

Step A. (±)-re/-l-(4-Fluorobenzyl)-3-((3S,4S)-3-hydroxy-4-(4- methoxyphenyl)piperidin- 1 -yl)pyrrolidin-2-one.

To a solution of 3-bromo-l-(4-fluorobenzyl)pyrrolidin-2-one (Intermediate 1, 300 mg, 1.1 mmol) and trans-4-(4-methoxyphenyl)piperidin-3-ol (from Example 46, step B, 240 mg, 1.16 mmol) in acetonitrile (10 mL) was added triethylamine (560 mg, 5.5 mmol) and the mixture was heated at 120 °C in a microwave reactor for 1 h. The reaction mixture was then diluted with water and extracted with 100 mL of ethyl acetate. The organic layer was dried over Na2S04, filtered, and evaporated under reduced pressure to give (±)-re/-l-(4-fluorobenzyl)-3-((3S,4S)-3-hydroxy-4-(4- methoxyphenyl)piperidin-l-yl)pyrrolidin-2-one (450 mg, 0.7 mmol) as a mixture of four diastereomers which was used without further purification. LCMS (Method S) RT 1.89 min, m/z 399.1 (M+H+).

Step B. (±)-re/-3-((3lS,45)-3-Fluoro-4-(4-methoxyphenyl)piperidin- 1 -yl)- 1 -(4-fluorobenzyl)pyrrolidin-2-one.

To a solution of l-(4-fluorobenzyl)-3-(trans-3-hydroxy-4-(4-methoxyphenyl)piperidin-l-yl)pyrrolidin-2-one from step B (2.5 g, 6.3 mmol) in 50 mL DCM was added DAST (4.1 mL, 31 mmol) and the reaction was stirred at ambient temperature for 1 h. The reaction was then quenched with a sat.bicarbonate solution (200 mL) and the mixture was extracted with 200 mL of DCM. The organic layer was dried over Na2S04, filtered, and evaporated under reduced pressure. The residue was purified via silica gel chromatography eluting with 28% ethyl acetate in hexane to give (±)-re/-3-((35′,45)-3-fluoro-4-(4-methoxyphenyl)piperidin-l-yl)-l-(4-fluorobenzyl)pyrrolidin-2-one (900 mg, 1.6 mmol) as a mixture of four

diastereomers. LCMS (method P) RT 0.89 min, m/z 401.2 (M+H+).

Step C. 3-((3lS,45)-3-Fluoro-4-(4-hydroxyphenyl)piperidin-l-yl)-l-(4-fluorobenzyl)pyrrolidin-2-one.

To a solution of (tra/?5-3-fluoro-4-(4-methoxyphenyl)piperidin-l-yl)-l-(4-fluorobenzyl)pyrrolidin-2-one (700 mg, 1.75 mmol) in 50 mL of DCM at 0 °C was added BBr3(0.3 mL, 3.5 mmol). The reaction mixture was allowed to warm up to room temperature over 1 h. The mixture was then diluted with a sat. bicarbonate solution and extracted with 200 mL of DCM. The organic layer was dried over Na2S04, filtered, and evaporated under reduced pressure.

The residue was purified by preparative HPLC(method A) to yield 120 mg of 3-((35′,45)-3-fluoro-4-(4-hydroxyphenyl)piperidin-l-yl)-l-(4-fluorobenzyl)pyrrolidin-2-one as a mixture of four diastereomers. LCMS (method N) RT 1.45 min, m/z 387.0 (M+H+).

Step D. (S)- 1 -(4-fluorobenzyl)-3-((35′,45)-3-hydroxy-4-(4-methoxyphenyl)piperidin-1 -yl)pyrrolidin-2-one, (S)- 1 -(4-fluorobenzyl)-3-((3i?,4i?)-3-hydroxy-4-(4-methoxyphenyl)piperidin-l-yl)pyrrolidin-2-one, (i?)-l-(4-fluorobenzyl)-3-((35′,45)-3-hydroxy-4-(4-methoxyphenyl)piperidin- 1 -yl)pyrrolidin-2-one, and (R)- 1 -(4-fluorobenzyl)-3-((3i?,4i?)-3-hydroxy-4-(4-methoxyphenyl)piperidin-l-yl)pyrrolidin-2-one.

The diastereomeric mixture from step C was separated via chiral SFC (method F) into the 4 homochiral diastereomers, Example 48 P-1, P-2, P-3, and P-4. Data for P-1 (S)- 1 -(4-fluorobenzyl)-3-((35′,45)-3-hydroxy-4-(4-methoxyphenyl)piperidin- 1 -yl)pyrrolidin-2-one: Chiral SFC (Method F) RT 3.32 min, 100% AP; HPLC (Method A) RT 6.53 min, 96.0%AP, (Method B) RT 6.7 min, 96.3 %AP; LCMS (Method F) RT 2.02 min, m/z 387.0 (M+H+); 1H NMR (400 MHz, methanol-^) δ ppm 7.32 (dd, J=8.78, 5.27 Hz, 2 H) 7.07 – 7.14 (m, 4 H) 6.76 (d, J=8.53 Hz, 2 H) 4.41 – 4.56 (m, 2 H) 3.74 (t, J=8.78 Hz, 1 H) 3.23 – 3.31 (m, 2 H) 3.10 – 3.17 (m, 1 H) 3.01 (d, J=11.04 Hz, 1 H) 2.88 (d, J=7.03 Hz, 1 H) 2.66 (td, J=10.04, 4.52 Hz, 1 H) 2.57 (dd, J=10.54, 6.53 Hz, 1 H) 2.40 – 2.49 (m, 1 H) 2.16 – 2.25 (m, 1 H) 2.03 – 2.13 (m, 1 H) 1.80 -1.88 (m, 2 H). Data for P-2 (5)-l-(4-fluorobenzyl)-3-((3i?,4i?)-3-hydroxy-4-(4-methoxyphenyl)piperidin-l-yl)pyrrolidin-2-one: Chiral SFC (Method F) RT 4.15 min, 99.7% AP; HPLC (Method A) RT 6.52 min, 98.1%AP, (Method B) RT 6.92 min, 98.6 %AP; LCMS (Method F) RT 2.03 min, m/z 387.0 (M+H+);1H NMR (400 MHz, methanol-^) δ ppm 7.29 – 7.34 (m, 2 H) 7.07 – 7.14 (m, 4 H) 6.76 (d, J=9.04 Hz, 2 H) 3.71 (t, J=8.78 Hz, 1 H) 3.39 – 3.45 (m, 1 H) 3.24 – 3.31 (m, 2 H) 2.74 -2.80 (m, 1 H) 2.64 – 2.72 (m, 1 H) 2.57 (dd, J=10.54, 6.02 Hz, 1 H) 2.43 (td, J=10.04, 5.02 Hz, 1 H) 2.15 – 2.25 (m, 1 H) 2.05 – 2.14 (m, 1 H) 1.77 – 1.85 (m, 2 H). Data for P-3 (i?)-l-(4-fluorobenzyl)-3-((35′,45)-3-hydroxy-4-(4-methoxyphenyl)piperidin-l-yl)pyrrolidin-2-one: Chiral SFC (Method F) RT 4.56 min, 97.4% AP; HPLC (Method A) RT 6.53 min, 96.0%AP, (Method B) RT 6.94 min, 96.4 %AP; LCMS (Method F) RT 2.02 min, m/z 387.0 (M+H+); 1H NMR (400 MHz, methanol-^) δ ppm 7.29 -7.34 (m, 2 H) 7.07 – 7.13 (m, 4 H) 6.74 – 6.78 (m, 2 H) 4.40 – 4.55 (m, 2 H) 3.71 (t, J=9.04 Hz, 1 H) 3.38 – 3.45 (m, 1 H) 3.23 – 3.31 (m, 2 H) 2.76 (br. s., 1 H) 2.64 -2.72 (m, 1 H) 2.57 (dd, J=10.54, 6.02 Hz, 1 H) 2.43 (td, J=10.04, 5.02 Hz, 1 H) 2.16 – 2.25 (m, 1 H) 2.05 – 2.14 (m, 1 H) 1.77 – 1.87 (m, 2 H). Data for P-4 (R)-\-(4- fluorobenzyl)-3-((3i?,4i?)-3-hydroxy-4-(4-methoxyphenyl)piperidin-l-yl)pyrrolidin-2-one: Chiral SFC (Method F) RT 5.57 min, 99.9% AP; HPLC (Method A) RT 6.55 min, 99.9%AP, (Method B) RT 6.90 min, 99.9 %AP; LCMS (Method F) RT 2.03 min, m/z 387.0 (M+H+); 1H NMR (400 MHz, methanol-^) δ ppm 7.32 (dd, J=8.78, 5.27 Hz, 2 H) 7.07 – 7.14 (m, 4 H) 6.76 (d, J=8.53 Hz, 2 H) 4.41 – 4.56 (m, 3 H) 3.74 (t, J=8.53 Hz, 1 H) 3.24 – 3.32 (m, 2 H) 3.10 – 3.17 (m, 1 H) 2.66 (td, J=9.91, 4.77 Hz, 1 H) 2.57 (dd, J=10.54, 6.53 Hz, 1 H) 2.41 – 2.49 (m, 1 H) 2.16 – 2.24 (m, 1 H) 2.04 – 2.12 (m, 1 H) 1.80 – 1.88 (m, 2 H).

ADDITIONAL INFORMATION

Intravenous administration of BMS-986169 or BMS-986163 dose-dependently increased GluN2B receptor occupancy and inhibited in vivo [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) binding, confirming target engagement and effective cleavage of the prodrug. BMS-986169 reduced immobility in the mouse forced swim test, an effect similar to intravenous ketamine treatment. Decreased novelty suppressed feeding latency, and increased ex vivo hippocampal long-term potentiation was also seen 24 hours after acute BMS-986163 or BMS-986169 administration. BMS-986169 did not produce ketamine-like hyperlocomotion or abnormal behaviors in mice or cynomolgus monkeys but did produce a transient working memory impairment in monkeys that was closely related to plasma exposure. Finally, BMS-986163 produced robust changes in the quantitative electroencephalogram power band distribution, a translational measure that can be used to assess pharmacodynamic activity in healthy humans. Due to the poor aqueous solubility of BMS-986169, BMS-986163 was selected as the lead GluN2B NAM candidate for further evaluation as a novel intravenous agent for TRD.

 

REFERENCES

1: Bristow LJ, Gulia J, Weed MR, Srikumar BN, Li YW, Graef JD, Naidu PS, Sanmathi
C, Aher J, Bastia T, Paschapur M, Kalidindi N, Kumar KV, Molski T, Pieschl R,
Fernandes A, Brown JM, Sivarao DV, Newberry K, Bookbinder M, Polino J, Keavy D,
Newton A, Shields E, Simmermacher J, Kempson J, Li J, Zhang H, Mathur A, Kallem
RR, Sinha M, Ramarao M, Vikramadithyan RK, Thangathirupathy S, Warrier J, Islam
I, Bronson JJ, Olson RE, Macor JE, Albright CF, King D, Thompson LA, Marcin LR,
Sinz M. Preclinical Characterization of
(R)-3-((3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin-1-yl)-1-(4-methylbenzyl)pyrr
olidin-2-one (BMS-986169), a Novel, Intravenous, Glutamate N-Methyl-d-Aspartate
2B Receptor Negative Allosteric Modulator with Potential in Major Depressive
Disorder. J Pharmacol Exp Ther. 2017 Dec;363(3):377-393. doi:
10.1124/jpet.117.242784. Epub 2017 Sep 27. PubMed PMID: 28954811.

2. BMS-986163, a Negative Allosteric Modulator of GluN2B with Potential Utility in Major Depressive Disorder
Lawrence R. Marcin, Jayakumar Warrier, Srinivasan Thangathirupathy, Jianliang Shi, George N. Karageorge, Bradley C. Pearce, Alicia Ng, Hyunsoo Park, James Kempson, Jianqing Li, Huiping Zhang, Arvind Mathur, Aliphedi B. Reddy, G. Nagaraju, Gopikishan Tonukunuru, Grandhi V. R. K. M. Gupta, Manjunatha Kamble, Raju Mannoori, Srinivas Cheruku, Srinivas Jogi, Jyoti Gulia, Tanmaya Bastia, Charulatha Sanmathi, Jayant Aher, Rajareddy Kallem, Bettadapura N. Srikumar, Kumar Kuchibhotla Vijaya, Pattipati S. Naidu, Mahesh Paschapur, Narasimharaju Kalidindi, Reeba Vikramadithyan, Manjunath Ramarao, Rex Denton, Thaddeus Molski, Eric Shields, Murali Subramanian, Xiaoliang Zhuo, Michelle Nophsker, Jean Simmermacher, Michael Sinz, Charlie Albright, Linda J. Bristow, Imadul Islam, Joanne J. Bronson, Richard E. Olson, Dalton King, Lorin A. Thompson, and John E. Macor
Publication Date (Web): April 13, 2018 (Letter)
DOI: 10.1021/acsmedchemlett.8b00080

Patent ID Patent Title Submitted Date Granted Date
US9221796 Selective NR2B antagonists
2015-01-05
2015-12-29

//////////////////BMS-986169, BMS-986169, BMS 986169, BMS986169

 O=C1N(CC2=CC=C(C)C=C2)CC[C@H]1N3C[C@@H](F)[C@H](C4=CC=C(O)C=C4)CC3

CH4630808

$
0
0

str1

RZHKGHCZVMTIDL-XSRFUOEWSA-N.png

CH4630808, CH-4630808, NA-808

(2S)-2-[(E,2S)-1-[[(1S)-2-(4-but-2-ynoxyphenyl)-1-carboxyethyl]amino]-1,11-dioxooctadec-3-en-2-yl]-2-hydroxybutanedioic acid

Molecular Formula: C35H49NO10
Molecular Weight: 643.774 g/mol

Cas 827034-92-4  DOUBLE BOND E, SP ROT (-)

CAS 744208-75-1  E Z NOT DEFINED

  • D-erythro-Pentonic acid, 5-[[(1S)-2-[4-(2-butynyloxy)phenyl]-1-carboxyethyl]amino]-3-C-carboxy-2,4,5-trideoxy-5-C-oxo-4-[(1E)-9-oxo-1-hexadecenyl]- (9CI)
  • 5-[[(1S)-2-[4-(2-Butyn-1-yloxy)phenyl]-1-carboxyethyl]amino]-3-C-carboxy-2,4,5-trideoxy-5-C-oxo-4-[(1E)-9-oxo-1-hexadecen-1-yl]-D-erythro-pentonic acid
  • D-erythro-Pentonic acid, 5-[[(1S)-2-[4-(2-butyn-1-yloxy)phenyl]-1-carboxyethyl]amino]-3-C-carboxy-2,4,5-trideoxy-5-C-oxo-4-[(1E)-9-oxo-1-hexadecen-1-yl]-

Chugai Pharmaceutical (Originator)

str1

Trisodium Der ,CAS 1799542-36-1,  SP ROT (-), MW 709.7097, MF C35 H46 N O10 . 3 Na, Trisodium (2S)-2-[(2S,3E)-1-([(1S)-2-[4-(but-2-yn-1-yloxy)phenyl]-1-carboxylatoethyl]amino)-1,11-dioxooctadec-3-en-2-yl]-2-hydroxybutanedioate

SIMILAR

PAPER

https://www.sciencedirect.com/science/article/pii/S0960894X12013741

Bioorganic & Medicinal Chemistry Letters

Volume 23, Issue 1, 1 January 2013, Pages 336-339
str1

Image result for CH4630808.

Image result for CH4630808

Scheme 3. Reagents and conditions: (a) TBDPSCl, imidazole, DMF, rt; (b) n-BuLi, (CH2O)n, THF; (c) Red-Al, 0 C, then I2, THF 40 C; (d) DHP, PPTS, DCM, rt; (e) n-BuLi, (CH2O)n, THF, 78 C to 0 C; (f) TBDPSCl, imidazole, DMF, rt; (g) PPTS, EtOH. 28.6% over 7 steps; (h) L-(+)-DET, Ti(Oi-Pr)4, TBHP, DCM, 97%, >95% ee; (i) Terminal alkyne 7 in Scheme 2, Cp2ZrClH, MeMgCl, CuI, THF, 20 C, 91% yield⁄ ; (j) 2,2-dimethoxypropane, PPTS, DCM, 85% yield⁄ ; (k) TBAF, AcOH, THF, 89% yield⁄ ; (l) oxalyl chloride, DMSO, triethylamine, DCM, 78 C; (m) NaClO2, NaH2PO4, 2-methyl-2-butene, t-BuOH-H2O; (n) N,N-dimethylformamide di-tert-butyl acetal, 58% yield in 3 steps⁄ ; (o) 80% AcOH, THF, rt, 90% yield⁄ ; (p) Jones reagent, aqueous acetone, 10 C, 80% yield⁄ ; (q) the corresponding amine, HATU, Hunig base, 85% yield⁄ ; (r) TFA, anisole, DCM, 90% yield⁄ ; (s) H2-Pd/C, EtOH, 80%; (t) NaBH4, THF, MeOH, 93% yield. ⁄ yields when n = 5 and R1 = n-C7H15.

Paper

Development of a Kilogram-Scale Synthesis of a Novel Anti-HCV Agent, CH4930808

CH4630808 corrected

 Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
 Pharmaceutical Technology Division, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-ku, Tokyo 115-8543, Japan
§ Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
Org. Process Res. Dev.201822 (2), pp 236–240
DOI: 10.1021/acs.oprd.7b00383
*E-mail: haneishitys@chugai-pharm.co.jp. Tel.: +81-550-87-9102. Fax: +81-550-87-5326.

Abstract

Abstract Image

Herein, we report the kilogram-scale synthesis of CH4930808 (1) CH 4630808 CORRECTED, a novel anti-hepatitis C virus agent. While pursuing improved productivity using many through-process strategies, we conducted scrupulous impurity control. Finally, we successfully developed a practical and scalable process for the synthesis of (1·1.5Na·2.5H2O), by which we prepared 3.28 kg of the active pharmaceutical ingredient for clinical studies

https://pubs.acs.org/doi/suppl/10.1021/acs.oprd.7b00383/suppl_file/op7b00383_si_001.pdf

1H-NMR and 13C-NMR spectra of compound 5·HCl S 3– S 4

1H-NMR spectra of compound 1·1.5 Na·2.5 H2O S 5

13C-NMR spectra compound 1·1.5 Na·2.5 H2O S 6

1H-COSY spectra of compound 1·1.5 Na·2.5 H2O S 7 – S 8

DEPT spectra of compound 1·1.5 Na·2.5 H2O S 9 – S 10

HMBC spectra of compound 1·1.5 Na·2.5 H2O S 11 – S 17

MASS

PATENT

WO 2004071503

WO 2005005372

WO 2006016657

WO 2006088071

WO 2007000994

WO 2007132882

WO 2009154248

WO 2014027696

PAPER

Angewandte Chemie, International Edition (2012), 51(17), 4218-4222, S4218/1-S4218/77.

Bioorganic & Medicinal Chemistry Letters (2013), 23(1), 336-339

PAPER

Organic & Biomolecular Chemistry (2017), 15(31), 6632-6639.

http://pubs.rsc.org/en/Content/ArticleLanding/2017/OB/C7OB01608E#!divAbstract

10.1039/C7OB01608E

Stereoselective synthesis of the viridiofungin analogue NA808 from a chiral tetrahydrofuran-carboxylic acid

 Author affiliations

Abstract

The viridiofungin analogue NA808 was synthesized by the stereoselective Ireland–Claisen rearrangement of dienylmethyl ester, regioselective bromolactonization of β-divinylpropanoic acid and retro-bromolactonization.

Graphical abstract: Stereoselective synthesis of the viridiofungin analogue NA808 from a chiral tetrahydrofuran-carboxylic acid
http://www.rsc.org/suppdata/c7/ob/c7ob01608e/c7ob01608e1.pdf
str1 str2 str3
PATENT
https://patents.google.com/patent/WO2004071503A1/ar

The number of people infected with hepatitis C virus (HCV) is estimated at 1 to 200 million people worldwide, and over 2 million people in Japan. Approximately 50% of these patients migrate to chronic hepatitis, of which approximately 20% become liver cirrhosis, liver cancer after more than 30 years after infection. About 90% of liver cancer is said to be hepatitis C cause. In Japan, more than 20,000 patients die every year from liver cancer associated with HCV infection.

HCV was discovered in 1989 as a major causative virus of non-A non-B hepatitis after transfusion. HCV is an enveloped RNA virus whose genome

It consists of single-stranded (+) RNA and is classified as a genus Hepacivirus of Flaviviridae.

Since HCV avoids the immune mechanism of the host due to a cause which is still unclear, persistent infection is often established even when infected with an adult with developed immune mechanism, progresses to chronic hepatitis, liver cirrhosis, hepatocellular carcinoma, surgery It is also known that many patients have liver cancer recurrence due to inflammation that continues to occur in non-cancerous areas.

Therefore, establishment of an effective therapy for hepatitis C is desired, and among them, apart from coping therapy that suppresses inflammation by anti-inflammatory agents, development of a drug that reduces or eradicates HCV in the affected liver It is strongly desired.

Interferon treatment is currently known as the only effective treatment for HCV elimination. However, the number of patients with interferon effective is about one third of all patients. In particular, interferon response to HCV genotype 1 b is very low. Therefore, development of anti-HCV drugs that can replace or be used in combination with interferon is strongly desired.

In recent years, Ribavirin (1 – 3 – D – lipofuranosyl – 1 H – 1, 2, 4 – triazole – 3 – carboxamide) is commercially available as a therapeutic agent for hepatitis C by combining with interferon, Is still low, further new treatment for hepatitis C is desired. In addition, attempts have been made to eliminate viruses by enhancing the immune system of patients, such as interferon agonists, interleukin-12 agonists, etc. However, no effective drug has yet been found.

Since the HCV gene has been cloned, molecular biological analysis of the mechanism and function of viral genes, functions of proteins of each virus and the like has been accompanied by rapid development of forces, replication of virus in host cells, persistent infection, pathogenesis The mechanism such as sexuality has not been sufficiently elucidated, and at the present time, an HCV infection experiment system using reliable cultured cells has not been constructed. Conventionally, when evaluating anti-HCV drugs, alternative alternative virus method using other closely related viruses had to be used.

In recent years, however, it became possible to observe in vitro HCV replication using the nonstructural region part of HCV, so that anti-HCV drugs could be easily evaluated by the replicon assay method (Non-Patent Document 1). The mechanism of H CV RN A replication in this system is believed to be identical to the replication of the full-length HCV RNA genome infected with hepatocytes. Therefore, this system can be said to be a cell-based approach system useful for identifying compounds that inhibit the replication of HCV.

The compounds claimed in this patent are compounds that inhibit the replication of HCV found by the replicon astrocyte method. These inhibitors are considered highly likely to be therapeutic agents for HCV.

Non-Patent Document 1

B. Roman et al., Science (Science), 1999, 285, 110 – 113

Example 14

– 1 (Step 1 1)

According to the method described in the literature (J. Org. Chem. 1989, 45, 5522, BE Marron, et al)

TBDPSO.

a on

Of compound a (7.0 1 g) was synthesized, and anhydrous ethyl ether of this compound a

(700 ml) was cooled to 0 ° C. and bis (2-methoxyethoxy) aluminum hydride (414 mmol, 218 ml, 70% toluene solution) was added slowly. Five minutes after adding the reagent, the ice bath was removed and stirring was continued for 1 hour at room temperature. The reaction solution was cooled to 0 ° C and anhydrous ethyl acetate (1 9.8 ml, 203 mmol) was added slowly. After stirring at the same temperature for 10 minutes, it was cooled to 1 78 ° C., and iodine (76.1 g,

300 thigh 0 1) was added. The temperature was gradually raised to room temperature over 2 hours to complete the reaction. To the reaction solution was added aqueous sodium bisulfite solution, and ethyl acetate was added. The reaction solution was filtered with suction through celite, the organic layer was separated, and the aqueous layer was extracted again with ethyl acetate. The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the crude title compound (100 g) as a light brown oily substance. The obtained crude product was directly used for the next reaction.

Physicochemical properties of compound b

Molecular weight 466

FAB-MS (positive mode, matrix m-NBA) 467 (M + H + ).

Chemical shift value of X H-NMR (in heavy chloroform) δ:

J = 6 Hz), 3.80 (2H, t, J = 6 Hz), 4.18 (2H, t, J = 5 Hz), 2.73 (2H, t, J = 6 Hz), 1.49 Hz, 5.91 (1 H, t, J = 5 Hz), 7.35 – 7.46 (6 H, m), 7.65 – 7.69 (4 H, m)

1 -2 (Step 1 – 2)

TBDPS

Dichloro port methane solution of compound b obtained in the above reaction (300 ml) was cooled to 0 ° C, dihydropyran (22. 7 ml, 248删0 plus 1). Pyridinium paratoluenesulfonic acid (260 mg, 1 mol) was added to this solution. After 1 hour sodium bicarbonate water was added to stop the reaction. The separated organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude compound c (108 g) thus obtained was directly used for the next reaction.

Physicochemical properties of compound c

Molecular weight 550

FAB-MS (positive mode, matrix m-NBA) 551 (M + H + )

Chemical shift value of 1 H – NMR (in heavy mouth formium) δ:

3.46-3.58 (2H, m), 3.76 (2H, t, J = 6 Hz), 3.82 (2H, t, J = 6 Hz), 1.04 (9H, s), 1.49-1.91 J = 13, 6 Hz), 4.65 (1 H, t, J = 3 Hz), 5.91 (1 H, t (s)), 4.93 (1 H, m), 4.06 (1 H, dd, J = 13, 6 Hz) , J = 5 Hz) 7.35 – 7.43 (6 H, m), 7.65 – 7.69 (4 H, m)

1-3 (Step 1- 3)

The crude compound c (4. 73 g) was dissolved in anhydrous ethyl ether (30 ml) and cooled to 1 78 ° C. Tert-butyllithium (1 7. 2 mol, 1 0.7 ml, 1.6 N pentane solution) was added slowly. After stirring at the same temperature for 1 hour, paraformaldehyde (1 8.9 mraol, 570 mg) was added and the mixture was warmed to 0 ° C. for 30 minutes at the same temperature and stirred for 1 hour. An aqueous solution of salthyanmonium was added to stop the reaction, and the mixture was extracted with ethyl acetate. The aqueous layer was extracted with a small amount of ethyl acetate and the combined organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The crude product obtained by concentration under reduced pressure was purified by column chromatography (silica gel, hexane-ethyl acetate 9: 1 to 4: 1) to give compound d (1. 635 g) as a colorless oily substance.

Physicochemical properties of compound d

Molecular weight 454

FAB-MS (positive mode, matrix m-NBA) 455 (M + H + )

^ – NMR (chemical shift value in heavy chloroform) δ:

J = 6 Hz), 3.03 (1 H, t, J = 6 Hz), 3.47 – 3.58 (2 H, m), 3.75 – 3.92 (2 H, (3 H, m), 4.08 – 4.26 (4 H, m), 4.68 (1 H, t, 3 Hz),

5.53 (1 H, t, J = 7 Hz) 7.35 – 7.47 (6 H, m), 7.64 – 7.68 (4 H, m)

1 -4 (Step 1 – 4)

An anhydrous N, N-dimethylformamide solution (2 ml) of the compound d (34 mg, 0. 76 mmol) and imidazole (71 mg, 1.14 mmol) was cooled to 0 ° C and tert- Chlorosilane (0: 2 ml, 0. 76 mmol) was capped and stirred for 2 hours. An ammonium chloride aqueous solution was added to stop the reaction, and the mixture was extracted with hexane. The organic layer was washed with water twice, followed by saturated brine and dried over anhydrous sodium sulfate. And concentrated under reduced pressure to obtain crude compound e (554 mg) as a colorless oily substance.

Physicochemical properties of compound e

FAB-MS (positive mode, matrix m-NBA) 715 (M + Na + )

Chemical shift value of ‘1 H-NMR (in heavy mouth formium) δ:

(4H, m), 1.00 J = 7 Hz), 5.43 (1 H, t, J = 7 Hz), 7.29 – 7.48 (12 H, m), 4.00 – 4.09 (1 H, m), 4.14 , 7.57 – 7.78 (8 H, m)

1-5 (Step 1- 5)

f

Pyridinium paratoluenesulfonic acid (9 O mg, 0.36 mmol) was added to an ethanol solution (6 ml) of the compound e (1. 16 g, 1. 67 mmol), and the mixture was stirred at 60 ° C. for 3.5 hours. After cooling the solution to room temperature, a saturated aqueous sodium bicarbonate solution was added and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water and saturated brine, and dried over anhydrous sodium sulfate. The mixture was concentrated under reduced pressure, and the resulting crude product was purified by column chromatography (silica gel, hexane / ethyl acetate 20: 1) to give compound f (825 mg, 81%) as a colorless oily substance.

Physicochemical properties of compound f

Molecular weight 608

FAB-MS (positive mode, matrix m-NBA) 631 (M + Na + )

^ – NMR (chemical shift value in heavy chloroform) δ:

(2H, t, J = 7 Hz), 3.75 (2H, t, J = 7 Hz), 3.90 (2H, t, J = 7 Hz), 1.01 (9H, s), 1.01 , 7.59-7.47 (12 H m), 7.57-7.75 (8 H, m), 4.14 (2 H, s), 5 47 (1 H, t, J =

1-6 (Step 1-6)

9

The round bottom flask containing the rotor was heated and dried under reduced pressure and then purged with nitrogen, and anhydrous

Dichloromethane (60 ml) was added and cooled to _20 ° C. Titanium tetraisopropoxide (2.3 3 ml, 7.8 8 mmol), L 1 (+) – Jetyl tartrate (1.6 2 ml, 9. 4 6 min. 0 1) was added successively, and after stirring for 15 minutes, compound f (4.80 g, 7. 88 mmol) in dichloromethane (30 ml), and the mixture was stirred for 15 minutes. Cool to _ 25 ° C and add tert-butyl hydroperoxide (5. 25 ml,

15. 8 mmol, 3 N dichloromethane solution) was slowly added dropwise. After completion of the dropwise addition, the mixture was stirred at 20 ° C. for 2 hours, dimethylsulfide (1.1 ml) was added, and the mixture was further stirred at the same temperature for 1 hour. A 10% aqueous solution of tartaric acid was added to the reaction solution and the mixture was stirred for 30 minutes, and then stirred at room temperature for 1 hour. The organic layer was separated, the aqueous layer was extracted with a small amount of dichloromethane and the combined organic layers were dried over anhydrous sodium sulfate. The crude product obtained was concentrated under reduced pressure, and purified by force RAM chromatography (silica gel, hexane / monoacetic acid ethyl 9: 1). Compound g (4. 78 g, 97%) was obtained as a colorless oily substance. The asymmetric yield (> 95% ee) was determined by NMR analysis of the corresponding MT PA ester.

Physicochemical properties of compound g

Molecular weight 624

F AB-MS (positive mode, matrix m-NBA) 647 (M + Na + )

– Chemical shift value of NMR (in heavy chloroform) δ:

J = 14, 7 Hz), 2.23 (1 H, dt, J = 14, 1 H), 1.02 (9 H, s), 1.03 (9 H, s), 1.72 (6H, m), 7.32-7.45 (12H, m), 7.60- 7.65 (8H, m), 6.5 Hz), 3.17 (1H, dd, J = 6, 5 Hz), 3.55-3.79

1 – 7 (Step 1 – 7)

To a solution (100 ml) of the compound α (10. 45 g, 37.2 mmol) produced in the step 2-3 of Production Example 1 described below in an anhydrous tetrahydrofuran solution (100 ml) under a nitrogen atmosphere was added biscyclopentadienylzirconium hydride chloride (10. lg, 37.2 mol) was added at room temperature and stirred for 30 minutes. The resulting solution was cooled to 1780C and methyl magnesium chloride (24.7 ml, 74 mmol, 3 N tetrahydrofuran

Furan solution), and the mixture was stirred for 5 minutes. Monovalent copper iodide (500 mg, 7.2 mM) was added to this solution and the temperature was gradually raised to _ 30 ° C. An anhydrous tetrahydrofuran solution (70 ml) of the compound g (4. 49 g) was added over 20 minutes, and after completion of the dropwise addition, the mixture was stirred at 25 ° C. overnight. The saturated ammonium chloride aqueous solution was slowly added, the reaction was stopped, and the temperature was gradually raised to room temperature. The mixture was stirred at room temperature for 10 hours and the resulting white solid was filtered off through celite. The celite was washed thoroughly with ethyl acetate and the organic layer was separated. The aqueous layer was extracted with a small amount of ethyl acetate and the combined organic layer was washed with saturated aqueous ammonium chloride solution and then dried over anhydrous sodium sulfate. Concentrated under reduced pressure and the obtained crude product was purified by column chromatography (silica gel, hexyl acetate

20: 1 to 9: 1) to give compound h (5. 96 g, 91%) as a pale yellow oily substance.

Physicochemical properties of compound h

Molecular weight 907

F AB – MS (negative mode, matrix πι – Α Β A) 906 (Μ – Η + )

Chemical shift value of 1 H-NMR (in heavy chloroform) δ:

0.88 (3H, t, 
0.99 (9H, s), 1.04 (9H, s), 1.18-1.63 (22H, m), 1.78-2.01 (4H, m), 2.44-2.57 (1H, m), 3.00 (1H, t, J = 6 Hz), 3.59-3.92 (10H, m), 4.28 (1H, s), 5.37-5.55 (2H, m), 7.29-7.65 (20H, m)

1-8 (Step 1-8)

Compound h (5.30 g, 5.84 dragon ol) was dissolved in dichloromethane (200 ml) and 2, 2-dimethoxypropane (150 ml), pyridinium paratoluenesulfonic acid (15 mg, 0.058 mmol) was added , And the mixture was stirred at room temperature overnight. The reaction was quenched by adding saturated aqueous sodium bicarbonate and extracted twice with dichloromethane. After drying over anhydrous sodium sulfate, the mixture was concentrated under reduced pressure, and the resulting crude product was purified by column chromatography (silica gel, hexane-ethyl acetate 20: 1). Compound i (4. 69 g, 86%) was obtained as a pale yellow oily substance.

Physicochemical properties of Compound i

Molecular weight 947

F AB-MS (negative mode, matrix m-NBA) 946 (M – H + )

Chemical shift value of 1 H – NMR (in heavy mouth formium) δ:

(1 H, m), 0.88 (3H, t, J = 6 Hz), 1.02 (9H, s), 1.05 (9H, s), 1.14-1.63 (28H, m), 1. 2.16 (2H, m), 7.28 – 7.47 (12H, m), 7.61 – 7.69 (1H, d, J = 10 Hz), 3.64-3.86 (6H, m 3.92 (s, 4H), 5.36-5.42 8 H, m) 1 – 9 (Step 1 – 9)

A tetrahydrofuran solution (50 ml) of the compound i (4. 39 g, 4. 64 mmol) was cooled to 0 ° C., tetrabutylammonium fluoride (10. 2 ml, 10, 2 difficulty, 1 M tetrahydrofuran solution) and Acetic acid (0. 53 ml, 9. 27 mmol) was added. The temperature was gradually raised to room temperature and stirred for 2 days. A saturated ammonium chloride aqueous solution was added and the mixture was extracted twice with dichloromethane. The combined organic layer was washed with aqueous sodium bicarbonate and dried over anhydrous sodium sulfate. The crude product was purified by column chromatography (silica gel, hexane-ethyl acetate 9: 1 to 3: 2) to obtain the compound〗 (1. 73 g, 81%) Was obtained as a pale yellow oily substance.

Physicochemical properties of compound j

Molecular weight 470

F AB-MS (positive mode, matrix m-NBA) 493 (M + Na + )

Chemical shift value of X H-NMR (in heavy chloroform) δ:

2.73 (1H, dt, J = 6, 10 Hz), 2.95 (3H, t, J = 6 Hz), 1.17-1.73 (26H, m), 1.91-2.16 (4H, m), 2.4 J = 15, 7 Hz (1 H, dt, J = 15 Hz), 3.48 (1 H, d, J = 1 Hz), 3.63-4.01 (m, 10 H), 5.15 )

1-10 (Step 1- 10)

Under an atmosphere of nitrogen, a solution of oxalyl chloride (0. 575 ml, 6. 6 mol) in anhydrous dichloromethane (17 ml) was cooled to 178 ° C. and dimethyl sulfoxide

(0. 9 36 ml, 1 3 2 minol) in dichloromethane (1 ml) was added dropwise and the mixture was stirred for 15 minutes. Dichloromethane solution (5 ml) of compound j (388 mg, 0. 824 aura) was slowly added dropwise. The mixture was stirred at the same temperature for 1 hour, then terethylamine (3 ml, 21.4fflmol) was added and the mixture was stirred for 30 minutes. The cooling bath was removed and a low-boiling compound was removed by blowing a nitrogen gas stream to the solution, followed by drying under reduced pressure. Jether ether (15 ml) was added to the residue, and insoluble matter was filtered off and concentrated. After this operation was carried out twice, the obtained residue was immediately used for the next reaction.

The crude dialdehyde was dissolved in 2-methyl-2-propanol (24 ml) and 2-methyl-2-butene (6 ml) and cooled to about 5 to 7 ° C. To this solution was added sodium chlorite (745 mg, 8. 24 mmol) and sodium dihydrogenphosphate

(745 mg, 6. 2 l mmol) in water (7. 45 ml) was slowly added dropwise. After 2 hours the mixture was cooled to 0 ° C. and aqueous sodium hydrogenphosphate solution was added to adjust PH to approximately 5. The mixture was extracted three times with dichloromethane, and the combined organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate. After filtration, concentration under reduced pressure afforded a pale yellow oily residue which was immediately used for the next reaction without further purification.

The crude dicarboxylic acid was dissolved in N, N-dimethylformamide di tert-butylacetal (4. 5 ml) and stirred at 70 ° C. for 1 hour. The low boiling point compound was distilled off under reduced pressure. The residue was purified by column chromatography (silica gel, hexane / ethyl acetate 20: 1) to give compound k (340 mg, 60%) as a pale yellow oily substance.

Physicochemical properties of compound k

Molecular weight 6 10

FAB-MS (positive mode, matrix m-NBA) (M + H + ) 611, (M + Na + ) 633

^ – NMR (chemical shift value in heavy chloroform) δ:

(2H, ABq, J = 15, 18 Hz), 2.93 (1 H, q, J = 6 Hz), 1.18 J = 7 Hz), 3.82-3.88 (2H, m), 3.92 (4H, s), 5.51-5.69 (2H, m)

1- 11 (Step 1 – 1 1)

Compound k (34 mg, 0. 556 mmol) was dissolved in tetrahydrofuran (1 ml), 80% acetic acid aqueous solution (10 ml) was added, and the mixture was stirred at room temperature for 3.5 hours. The mixture was slowly added into a saturated aqueous solution of sodium bicarbonate to neutralize acetic acid and then extracted twice with ethyl acetate. Drying over anhydrous sodium sulfate, followed by filtration and concentration under reduced pressure to give compound t

(290 mg, 99%) as a pale yellow oil.

Physicochemical properties of compound f

Molecular weight 526

FAB – MS (positive mode, matrix m – NBA) (M + H + ) 527,

(M + Na + ) 549

Chemical shift value of iH-NMR (in heavy chloroform) δ:

(2H, Q 
, 2.25-2.41 (5H, m), 1.99 (1H, d, J = 7 Hz), 2.04 (1H, d (1H, t, 7 Hz), 1.18- 1.68 (36H, ra), 2.01 J = 7 Hz), 5.58 (1 H, dt, J = 16, 6 Hz), 3.62 (3H, m), 3.99 (1H, s), 5.42

1-12 (Step 1 – 12)

Acetone (45 ml) was cooled to 0 ° C. and Jyones reagent (0.48 ml, 0.9 mmol, 1.8 9 N) was added. An acetone solution (3 ml) of the compound (216 mg, 0, 41) was slowly added dropwise to this mixture. Stirring at the same temperature for 1 hour

After stirring, the reaction was stopped by adding an aqueous sodium bisulfite solution until the yellow color of the reaction disappeared and a dark green precipitate appeared. A saturated saline solution (20 ml) was added thereto, and the mixture was extracted twice with dichloromethane, and the combined organic layer was dried over anhydrous sodium sulfate. The mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (dichloromethane monomethanol 50: 1 to 20: 1) to give compound m (198 mg, 89%) as a pale yellow oily substance.

Physicochemical properties of compound m

Molecular weight 541

ESI (L CZMS positive mode) (M + H + ) 542

Chemical shift value of 1 H – NMR (in heavy mouth formium) δ:

J = 8 Hz), 2.70 (1 H, t, J = 6 Hz), 1.16 – 1.67 (36 H, m), 1.99 (2 H, J = 15, 5 Hz), 2.68 (1 H, d, J = 9 Hz), 3.28 )

1 – 13 (Step 1 – 13)

A solution of the compound m (6. 4 mg, 0.12 mmol), a solution of (S) -4- (2-butynyloxy) phenylalanine t-butyl ester hydrochloride (4.6 mg, 0.114 mmol) in N, N-dimethylformamide lml) was cooled to 110 ° C and N, N-diisopropylethylamine (0 ° 5 ml, 0.026 mmol), O- (7-azobenzotriazole 1- 1, N, N, N ‘, N’ – tetramethyluronium hexafluorophosphate (7.0 mg, 0.17 mmol) was added sequentially. The temperature was raised to room temperature with stirring and stirred overnight. An aqueous ammonium chloride solution was added to terminate the reaction, and the mixture was extracted with ethyl acetate. The organic layer was washed twice with water and then with saturated brine, and then dried over anhydrous sodium sulfate. After filtration and concentration under reduced pressure, the residue was purified by thin layer silica gel thin layer chromatography (hexane / ethyl acetate 7: 3) to obtain compound n

(8. 4 mg, 88%) as a colorless solid.

Physicochemical properties of compound n

^ – NMR (chemical shift value in heavy chloroform) δ:

J = 1.9 Hz), 1.90-2.03 (2H, m), 2.29 – 2.43 (4H, t, J = 6.9 Hz), 1 .12-1.68 (45H, m), 1.85 (3H, m), 4.22 (1 H, s), 4.57 – 4.74 (3H, d, J = 16.5 Hz) J = 8.6 Hz), 7.01 (1 H, d, J = 8.6 Hz), 5.46 (1 H, dd J = 9.2, 15.2 Hz), 5.64 (1 H, dt, J = 6.6, 15.2 Hz) 7.9 Hz), 7.13 (2H, d, J – 8.6 Hz)

1-14 (Step 1 – 14)

Dichloromethane solution (3 ml) of compound n (8.4 mg) was cooled to 0 ° C and anisanol (0.01 ml) and trifluoroacetic acid (1 ml) were sequentially added. Slowly warmed to room temperature and stirred overnight. After concentrating the reaction solution under reduced pressure and azeotropically twice with benzene, the residue was purified with megabond-1-butanediol (500 mg, Parian) (dichloromethane-methanol = 20: 1) to obtain Compound 21 (5. 3 mg, 80% As a colorless solid.

Physicochemical properties of compound 21 ‘

Molecular weight 643

ESI (LC / MS positive mode) 644 (M + H +)

Chemical shift value of 1 H – NMR (in methanol d – 4) δ:

0.90 (3 H, t, J = 7 Hz), 1.19 – 1.38 (1 m), 1.42 – 1.60 (cm), 1.82 (3 H, t,

J = 2 Hz), 2.8 – 2.98 (2 H, m), 3.09 – 3.23 (2 H, m), 2.8 (2H, d, J = 9 Hz) 7 7.13 (2H, d, J = 9 Hz), 4.53 – 4.67 (3H, m), 5.39-5.61 (2H, m), 6.83

Patent ID Patent Title Submitted Date Granted Date
US2011098477 Method Of Producing Compound Having Anti-Hcv Activity
2011-04-28
US2010152457 Intermediate compound for synthesis of viridiofungin a derivative
2010-06-17
US8030496 Intermediate compound for synthesis of viridiofungin a derivative
2010-06-17
2011-10-04
US7897783 Intermediate compound for synthesis of viridiofungin a derivative
2008-11-27
2011-03-01
Patent ID Patent Title Submitted Date Granted Date
US2011160252 PHARMACEUTICAL COMPOSITIONS FOR TREATMENT OR PREVENTION OF HBV INFECTION
2011-06-30
US2010274026 Virus therapeutic drug
2010-10-28
US7776918 Remedy for viral disease
2006-09-28
2010-08-17
US7378446 Compound having anti-hcv activity and process for producing the same
2006-08-31
2008-05-27
US9266853 ORALLY AVAILABLE VIRIDIOFUNGIN DERIVATIVE POSSESSING ANTI-HCV ACTIVITY
2013-08-16
2015-07-30

References

Discovery of NA808: A novel host targeting anti-HCV agent
237th Am Chem Soc (ACS) Natl Meet (March 22-26, Salt Lake City) 2009, Abst MEDI 14

///////////////CH4630808, CH 4630808, NA 808

Viridiofungin A.png

Viridiofungin A

CCCCCCCC(=O)CCCCCCC=CC(C(=O)NC(CC1=CC=C(C=C1)O)C(=O)O)C(CC(=O)O)(C(=O)O)O

TITLE COMPD

O=C(O)[C@](O)(CC(=O)O)[C@H](\C=C\CCCCCCC(=O)CCCCCCC)C(=O)N[C@@H](Cc1ccc(OCC#CC)cc1)C(=O)O

DOCONEXENT, доконексен, دوكونيكسانت , 二十二碳六烯酸

$
0
0

ThumbImage result for doconexent

ChemSpider 2D Image | Docosahexaenoic acid | C22H32O2(4Z,7Z,10Z,13Z,16Z,19Z)-Docosahexaenoic acid.png

Image result for doconexentDocosahexaenoic Acid

Doconexent

CAS 6217-54-5

WeightAverage: 328.4883
Chemical FormulaC22H32O2

4,7,10,13,16,19-Docosahexaenoic acid, (4Z,7Z,10Z,13Z,16Z,19Z)-

Doconexent sodium 295P7EPT4C 81926-93-4  2D chemical structure of 81926-93-4
  • (4Z,7Z,10Z,13Z,16Z,19Z)-Docosahexaenoic acid
  • 22:6-4, 7,10,13,16,19
  • 22:6(n-3)
  • 4,7,10,13,16,19-docosahexaenoic acid
  • 4,7,10,13,16,19-Docosahexaenoic acid
  • all-cis-4,7,10,13,16,19-docosahexaenoic acid
  • all-cis-DHA
  • cervonic acid
  • DHA
  • docosa-4,7,10,13,16,19-hexaenoic acid
  • Docosahexaenoic acid
  • Ropufa 60
  • S.Presso
  • all-Z-Docosahexaenoic acid
  • all-cis-4,7,10,13,16,19-Docosahexaenoic acid
  • Δ4,7,10,13,16,19-Docosahexaenoic acid
  • 4,7,10,13,16,19-Docosahexaenoic acid, (all-Z)- (8CI)
  • Docosahexaenoic acid (6CI)
    • (4Z,7Z,10Z,13Z,16Z,19Z)-4,7,10,13,16,19-Docosahexaenoic acid
    • (4Z,7Z,10Z,13Z,16Z,19Z)-Docosahexaenoic acid
    • (4Z,7Z,10Z,13Z,16Z,19Z)-Docosahexenoic acid
    • (all-Z)-4,7,10,13,16,19-Docosahexaenoic acid
    • 4-cis,7-cis,10-cis,13-cis,16-cis,19-cis-Docosahexaenoic acid
Docosahexaenoic acid (22:6(n-3))
ZAD9OKH9JC
доконексент [Russian] [INN]
دوكونيكسانت [Arabic] [INN]
二十二碳六烯酸 [Chinese] [INN]
(4Z,7Z,10Z,13Z,16Z,19Z)-4,7,10,13,16,19-Docosahexaenoic acid [ACD/IUPAC Name]
(4Z,7Z,10Z,13Z,16Z,19Z)-Docosa-4,7,10,13,16,19-hexaenoic acid
(4Z,7Z,10Z,13Z,16Z,19Z)-Docosahexaenoic acid
(all-Z)- 4,7,10,13,16,19-Docosahexaenoic Acid
(all-Z)-4,7,10,13,16,19-Docosahexaenoic acid
4,7,10,13,16,19-Docosahexaenoic acid, (4Z,7Z,10Z,13Z,16Z,19Z)-
all-Z-Docosahexaenoic acid
cis-4, cis-7, cis-10, cis-13, cis-16, cis-19-docosahexaenoic acid
cis-4,7,10,13,16,19-Docosahexaenoic acid
D4,7,10,13,16,19-Docosahexaenoic Acid
A mixture of fish oil and primrose oil; used as a high-docosahexaenoic acid fatty acid supplement.

A mixture of fish oil and primrose oil, doconexent is used as a high-docosahexaenoic acid (DHA) supplement. DHA is a 22 carbon chain with 6 cis double bonds with anti-inflammatory effects. It can be biosythesized from alpha-linolenic acid or commercially manufactured from microalgae. It is an omega-3 fatty acid and primary structural component of the human brain, cerebral cortex, skin, and retina thus plays an important role in their development and function. The amino-phospholipid DHA is found at a high concentration across several brain subcellular fractions, including nerve terminals, microsomes, synaptic vesicles, and synaptosomal plasma membranes

Image result for doconexent

Synthesis , By Farmer, Ernest H.; Van den Heuvel, Frantz A., From Journal of the Chemical Society (1938), 427-30.

ALSO

Title: Docosahexaenoic Acid
CAS Registry Number: 6217-54-5
CAS Name: (4Z,7Z,10Z,13Z,16Z,19Z)-4,7,10,13,16,19-Docosahexaenoic acid
Additional Names: cervonic acid; doconexent; DHA
Molecular Formula: C22H32O2
Molecular Weight: 328.49
Percent Composition: C 80.44%, H 9.82%, O 9.74%
Literature References: Omega-3 fatty acid found in marine fish oils and in many phospholipids. Major structural component of excitable membranes of the retina and brain; synthesized in the liver from a-linolenic acid, q.v. Isoln from oil of Sardina ocellata J. and structure: J. M. Whitcutt, Biochem. J. 67, 60 (1957). Improved isoln from cod liver oil: S. W. Wright et al., J. Org. Chem. 52,4399 (1987). Effect on brain and behavioral development: P. E. Wainwright, Neurosci. Biobehav. Rev. 16, 193 (1992). Review of uptake and metabolism by retinal cells: N. G. Bazan, E. B. Rodriguez de Turco, J. Ocul. Pharmacol. 10, 591-603 (1994). Review of clinical studies in infant formula supplementation: M. Makrides et al., Lipids 31, 115-119 (1996).
Properties: Clear, faintly yellow oil, mp -44.7 to -44.5°. n26D 1.5017.
Melting point: mp -44.7 to -44.5°
Index of refraction: n26D 1.5017
Use: Nutritional supplement.

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is a primary structural component of the human braincerebral cortexskin, and retina. It can be synthesized from alpha-linolenic acid or obtained directly from maternal milk (breast milk), fish oil, or algae oil.[1]

DHA’s structure is a carboxylic acid (-oic acid) with a 22-carbon chain (docosa- derives from the Ancient Greek for 22) and six (hexa-cis double bonds (-en-);[2] with the first double bond located at the third carbon from the omega end.[3] Its trivial name is cervonic acid, its systematic name is all-cis-docosa-4,7,10,13,16,19-hexa-enoic acid, and its shorthand name is 22:6(n−3) in the nomenclature of fatty acids.

Most of the DHA in fish and multi-cellular organisms with access to cold-water oceanic foods originates from photosynthetic and heterotrophic microalgae, and becomes increasingly concentrated in organisms the further they are up the food chain. DHA is also commercially manufactured from microalgae: Crypthecodinium cohnii and another of the genus Schizochytrium.[4] DHA manufactured using microalgae is vegetarian.[5]

In strict herbivores, DHA is manufactured internally from α-linolenic acid, a shorter omega-3 fatty acid manufactured by plants (and also occurring in animal products as obtained from plants), while omnivores and carnivores primarily obtain DHA from their diet.[6] Limited amounts of eicosapentaenoic and docosapentaenoic acids are possible products of α-linolenic acid metabolism in young women[7] and men.[6] DHA in breast milk is important for the developing infant.[8] Rates of DHA production in women are 15% higher than in men.[9]

DHA is a major fatty acid in brain phospholipids and the retina. While the potential roles of DHA in the mechanisms of Alzheimer’s disease are under active research,[10] studies of fish oil supplements, which contain DHA, have failed to support claims of preventing cardiovascular diseases.[11][12][13]

Image result for doconexent

Central nervous system constituent

DHA is the most abundant omega-3 fatty acid in the brain and retina. DHA comprises 40% of the polyunsaturated fatty acids (PUFAs) in the brain and 60% of the PUFAs in the retina. Fifty percent of the weight of a neuron‘s plasma membraneis composed of DHA.[14]

DHA modulates the carrier-mediated transport of choline, glycine, and taurine, the function of delayed rectifier potassium channels, and the response of rhodopsin contained in the synaptic vesicles, among many other functions.[15]

DHA deficiency is associated with cognitive decline.[16] Phosphatidylserine (PS) controls apoptosis, and low DHA levels lower neural cell PS and increase neural cell death.[17] DHA levels are reduced in the brain tissue of severely depressed patients.[18][19]

Image result for DOCONEXENT NMR

Metabolic synthesis

In humans, DHA is either obtained from the diet or may be converted in small amounts from eicosapentaenoic acid (EPA, 20:5, ω-3) via docosapentaenoic acid (DPA, 22:5 ω-3) as an intermediate.[7][6] This synthesis had been thought to occur through an elongation step followed by the action of Δ4-desaturase.[6] It is now considered more likely that DHA is biosynthesized via a C24 intermediate followed by beta oxidation in peroxisomes. Thus, EPA is twice elongated, yielding 24:5 ω-3, then desaturated to 24:6 ω-3, then shortened to DHA (22:6 ω-3) via beta oxidation. This pathway is known as Sprecher’s shunt.[20][21]

In organisms such as microalgae, mosses and fungi, biosynthesis of DHA usually occurs as a series of desaturation and elongation reactions, catalyzed by the sequential action of desaturase and elongase enzymes. A common pathway in these organisms involves:

  1. a desaturation at the sixth carbon of alpha-linolenic acid by a Δ6 desaturase to produce stearidonic acid,
  2. elongation of the stearidonic acid by a Δ6 elongase to produce to eicosatetraenoic acid,
  3. desaturation at the fifth carbon of eicosatetraenoic acid by a Δ5 desaturase to produce eicosapentaenoic acid,
  4. elongation of eicosapentaenoic acid by a Δ5 elongase to produce docosapentaenoic acid, and
  5. desaturation at the fourth carbon of docosapentaenoic acid by a Δ4 desaturase to produce DHA.[22]

Metabolism

DHA can be metabolized into DHA-derived specialized pro-resolving mediators (SPMs), DHA epoxides, electrophilic oxo-derivatives (EFOX) of DHA, neuroprostanes, ethanolamines, acylglycerols, docosahexaenoyl amides of amino acids or neurotransmitters, and branched DHA esters of hydroxy fatty acids, among others.[23]

The enzyme CYP2C9 metabolizes DHA to epoxydocosapentaenoic acids (EDPs; primarily 19,20-epoxy-eicosapentaenoic acid isomers [i.e. 10,11-EDPs]).[24]

Potential health effects

Neurological research

While one human trial of 402 subjects lasting 18 months concluded that DHA did not slow decline of mental function in elderly people with mild to moderate Alzheimer’s disease,[25] a similar trial of 485 subjects lasting 6 months concluded that algal DHA of 900 mg per day taken decreased heart rate and improved memory and learning in healthy, older adults with mild memory complaints.[26]

In another early-stage study, higher DHA levels in middle-aged adults was related to better performance on tests of nonverbal reasoning and mental flexibility, working memory, and vocabulary.[27]

One study found that the use of DHA-rich fish oil capsules did not reduce postpartum depression in mothers or improve cognitive and language development in their offspring during early childhood.[28] Another systematic review found that DHA had no significant benefits in improving visual field in individuals with retinitis pigmentosa.[29] A 2017 pilot study found that fish oil supplementation reduced the depression symptoms emphasizing the importance of the target DHA levels.[30]

Pregnancy and lactation

It has been recommended to eat foods which are high in omega-3 fatty acids for women who want to become pregnant or when nursing.[31] A working group from the International Society for the Study of Fatty Acids and Lipids recommended 300 mg/day of DHA for pregnant and lactating women, whereas the average consumption was between 45 mg and 115 mg per day of the women in the study, similar to a Canadian study.[32] Despite these recommendations, recent evidence from a trial of pregnant women randomized to receive supplementation with 800 mg/day of DHA versus placebo, showed that the supplement had no impact on the cognitive abilities of their children at up to seven years follow-up.[33]

Other research

In one preliminary study, men who took DHA supplements for 6–12 weeks had lower blood markers of inflammation.[34]

Nutrition

Algae-based DHA supplements

Ordinary types of cooked salmon contain 500–1500 mg DHA and 300–1000 mg EPA per 100 grams.[35] Additional rich seafood sources of DHA include caviar (3400 mg per 100 grams), anchovies (1292 mg per 100 grams), mackerel (1195 mg per 100 grams), and cooked herring(1105 mg per 100 grams).[35] Brains from mammals are also a good direct source, with beef brain, for example, containing approximately 855 mg of DHA per 100 grams in a serving.[36]

Discovery of algae-based DHA

In the early 1980s, NASA sponsored scientific research on a plant-based food source that could generate oxygen and nutrition on long-duration space flights. Certain species of marine algae produced rich nutrients, leading to the development of an algae-based, vegetable-like oil that contains two polyunsaturated fatty acids, DHA and arachidonic acid,[37] present in some health supplements.

Use as a food additive

DHA is widely used as a food supplement. It was first used primarily in infant formulas.[38] In 2004, the US Food and Drug Administration endorsed qualified health claims for DHA.[39]

Some manufactured DHA is a vegetarian product extracted from algae, and it competes on the market with fish oil that contains DHA and other omega-3s such as EPA. Both fish oil and DHA are odorless and tasteless after processing as a food additive.[40]

Studies of vegetarians and vegans

Vegetarian diets typically contain limited amounts of DHA, and vegan diets typically contain no DHA.[41] In preliminary research, algae-based supplements increased DHA levels.[42]While there is little evidence of adverse health or cognitive effects due to DHA deficiency in adult vegetarians or vegans, breast milk levels remain a concern for supplying adequate DHA to the developing fetus.[41]

DHA and EPA in fish oils

Fish oil is widely sold in capsules containing a mixture of omega-3 fatty acids, including EPA and DHA. Oxidized fish oil in supplement capsules may contain lower levels of EPA and DHA.[43][44]

Hypothesized role in human evolution

An abundance of DHA in seafood has been suggested as being helpful in the development of a large brain,[45] though other researchers claim a terrestrial diet could also have provided the necessary DHA.[46]

Patent

CN 106190872

https://patents.google.com/patent/CN106190872A/zh

PATENT

WO 2017038860

https://patents.google.com/patent/WO2017038860A1/en

[Example 1]
The raw EPA ethyl ester 1 of Comparative Example 1 containing EPA 96.7%, except for changing the temperature of the alkaline hydrolysis in 6 ° C., in the same manner as in Comparative Example 1 was alkaline hydrolysis.
That is, the starting EPA ethyl ester 1 2.50 g, ethanol 6.25 mL (4.92 g, 14.11 equivalents relative fatty acid), water 1.00 mL, 48 wt% sodium hydroxide aqueous solution 0.76 g ( 1.20 equivalents of base) was added a sample solution 3 was prepared against fatty acids. In sample liquid 3, moisture 1.40 g, i.e., was 10.27 equivalents relative fatty acid. The sample liquid 3, stirred for 24 hours 6 ° C., was subjected to hydrolysis treatment. Confirmed the completion of the reaction of the hydrolysis treatment, returned to the sample liquid 3 after treatment at room temperature, after transferred to a separatory funnel, and hexane was added 3.13 mL, purified water 2.50mL the sample liquid 3. When further adding 2.25g of hydrochloric acid, the sample solution 3 was separated into two layers of hexane and aqueous layers. The pH of the aqueous layer was 1.0.

The sample liquid 3 was stirred, then the mixture was allowed to stand, after removing the aqueous layer from the sample liquid 3, was further stirred with purified water 3.75mL the sample liquid 3 after removal. Hydrochloric acid was added small amount to adjust the pH of the aqueous layer to 1.0. Thereafter, the aluminum plate was washed with the same amount of purified water as rinsing liquid. Rinsing liquid is recovered after washing with water was repeatedly washed with water until neutral pH 6.0 ~ 7.0. The hexane layer was recovered from the sample liquid 3 after washing with water, the recovered hexane layer, the hexane was removed with an evaporator and vacuum, the EPA3 a composition containing free EPA was obtained 2.14 g.
Against EPA3, it was evaluated in the same manner as EPA1. The results are shown in Table 1 and Table 4.
The recovery was 93.8%. The resulting Gardner color of EPA3 is 2-, AnV 1.3, ethyl ester (EE) content 2790Ppm, conjugated diene acid content was 0.47%. Conjugated unsaturated fatty acids other than the conjugated diene acid was not detected. These physical property values are shown in Table 1. Note that the conjugated unsaturated fatty acids, only the conjugated diene acid shown in Table 1.

PATENT

WO-2018120574

Process for production of docosahexaenoic acid (DHA), by microbial fermentation of Schizochytrium limacinum . Discloses use of DHA for treating cardiovascular diseases, infertility or neurological diseases. See CN106635405 , claiming method for separating DHA from powder DHA grease by supercritical extraction method. Kingdomway lists that it produces DHA by microorganism fermentation.

DHA, the full name doc-4,7,10,13,16,19-docosahexaenoic acid, DHA, is a polyunsaturated fatty acid. The human body is difficult to synthesize itself and must be taken from the outside world. DHA is one of the essential fatty acids in the human body. It has important physiological regulation functions and health care functions. When it is lacking, it will cause a series of diseases, including growth retardation, skin abnormalities, scales, infertility, mental retardation, etc. In addition, there are cardiovascular diseases. Special preventive and therapeutic effects. Studies have also shown that DHA can act on many different types of tissues and cells, inhibit inflammation and immune function, including reducing the production of inflammatory factors, inhibit lymphocyte proliferation, etc. DHA also has multiple effects in preventing Alzheimer’s disease and neurological diseases. .

The current commercial sources of DHA are mainly fish oil and microalgae. DHA extracted from traditional deep-sea fish oil is unstable due to the variety, season and geographical location of fish, and the content of cholesterol and other unsaturated fatty acids is high. The difference in length and degree of unsaturation of fatty acid chains is large, resulting in limited production and content of DHA. It is not high, it is difficult to separate and purify, and the cost is high. With the growing shortage of fish oil raw materials, it is difficult to achieve the widespread use of DHA, a high value-added product in the food and pharmaceutical industries. The production of DHA by microbial fermentation can overcome the defects of traditional fish oil extraction, can be used for mass production of DHA, continuously meet people’s needs, has broad application prospects, and has attracted the attention of scholars at home and abroad. The microbial fermentation method uses fermented microorganisms such as fungi and microalgae to produce DHA-containing algal oil, and refined to obtain essential oil with high DHA content. DHA-producing strains approved by the Ministry of Health include Schizochytrium sp., Ulkenia amoeboida, and Crypthecodinium cohnii.

The market share of DHA produced by microbial fermentation is increasing rapidly year by year. There is a trend to replace DHA of fish oil, improve the production technology and quality of microalgae DHA, and the prospect of entering the microalgae DHA market is broad.

The publication No. CN103882072A discloses a method for producing docosahexaenoic acid by using Schizochytrium, and the highest yield disclosed is a cell dry weight of 61.2 g/L, a DHA content of 55.07%, and a DHA yield of 22.17 g. /L. The publication No. CN101812484A discloses a method for fermenting DHA by high-density culture of Schizochytrium, which discloses a dry cell weight of 120-150 g/L and a DHA yield of 26-30 g/L, which is also reported. The highest production level of DHA produced by Schizochytrium sp. Although the DHA productivity has been greatly improved compared with the previous research, the industrial production of docosahexaenoic acid by using microalgae greatly reduces the production cost, increases the unit yield, and enables the method of microbial fermentation to produce DHA. Promotion and popularization are still far from enough.

There are three main methods for extracting DHA from the fermentation liquid of Schizochytrium, one is centrifugation, the other is organic solvent extraction, and the third is supercritical extraction. Centrifugation, such as the publication No. CN101817738B, discloses a method for extracting DHA from algae and fungal cells by separating the microalgae or fungal fermentation broth after fermentation by a separation system, and adjusting the pH of the sludge with an acid. 2.0-4.0, then control the temperature of the slime at 10 °C-20 °C, add anti-oxidant in the slime, and then carry out high-pressure homogenization and breaking through the high-pressure homogenizer; add the broken mud to the water, stir and feed The liquid was separated by a three-phase separator to obtain DHA grease. The invention adopts physical wall breaking and physical extraction methods, has simple process, high cell breakage, low temperature treatment of bacteria sludge and antioxidant treatment, can effectively protect the biological activity of algae and fungal cells, and the product is green and non-toxic. Residue. However, the quality of the oil layer after centrifugation of the invention is poor. In addition to the oil, it also contains impurities such as water, medium components and cell debris, which is not conducive to subsequent refining. In addition, the wastewater layer after centrifugation contains a large amount of slag and has a high COD. Difficult to handle or process is extremely costly. The organic solvent extraction method, such as the publication No. CN101824363B, discloses a method for extracting docosahexaenoic acid oil: the fermentation liquid containing docosahexaenoic acid is subjected to enzymatic breaking, and then an organic solvent is used first. The first stage water is divided, the cells are enriched, and the organic solvent is used for secondary extraction to obtain a crude oil. The method is simple in operation and low in equipment investment, but the method uses organic solvent for extraction, and the final product may have solvent residue, and the extraction process has safety hazards such as flammability and explosion. The supercritical extraction method, as disclosed in the publication No. CN102181320B, discloses a method for extracting bio-fermented DHA algae oil, comprising the following steps: a) drying the solid matter obtained by solid-liquid separation of the microalgae fermentation liquid to obtain a dried bacterial cell; b) extracting the dried cells with supercritical carbon dioxide as an extractant to obtain a carbon dioxide fluid; c) separating the carbon dioxide fluid under reduced pressure to obtain DHA algae oil. Experiments show that the DHA content of DHA algae oil obtained by the method provided by the invention is more than 40%, the extraction yield is only 85.23%, and the need to add ethanol as the extracting agent has certain safety risks and supercritical. The equipment is expensive and the extraction yield is not high.

In the prior art, the refining of DHA hair oil is mostly carried out by chemical refining technology, and the DHA hair oil is degummed, alkali refining, decolorized and deodorized to obtain DHA essential oil. Inevitably, there are some problems in the process technology. For example, in order to achieve the requirement of controlling low acid value, alkali refining usually adds excessive alkali, and some triglycerides are inevitably saponified; high COD wastewater produced by alkali refining will pollute the environment; Alkali refining requires high temperature treatment for a long time, which is easy to cause the product’s peroxide value and anisidine value to increase; the deodorization temperature is high, and the long time is easy to produce trans fatty acids.

Currently, there is still a need to develop new DHA production processes.
Fermentation culture
In the following Examples 1-13, unless otherwise specified, the seed medium formulations used were: glucose 3%, peptone 1%, yeast powder 0.5%, sea crystal 2%, and pH natural (the rest being water). The fermentation medium formula is: glucose 12%, peptone 1%, yeast powder 0.5%, sea crystal 2% (the rest is water).
Example 1
The Schizochytrium sp. ATCC 20888, Schizochytrium limacinum Honda et Yokochi ATCCMYA-1381, and Schizochytrium sp. CGMCC No. 6843 slope-preserved strains were respectively inserted into 400 mL of medium. The 2L shake flask was cultured at a temperature of 25 ° C at a rotation speed of 200 rpm for 24 hours to complete the activated culture of the strain. According to the inoculation amount of 0.4%, the shake flask seed solution was connected to the first-stage seed tank containing the sterilized medium, and the culture temperature was 28 ° C, the aeration amount was 1 vvm, the tank pressure was 0.02 MPa, and the stirring speed was 50 rpm for 30 hours to complete the first stage. Seeds are expanded and cultured. The seed liquid of the primary seed tank was connected to the secondary seed tank containing the sterilized medium according to the inoculation amount of 3%, and the culture temperature was 28 ° C, the aeration amount was 1 vvm, the tank pressure was 0.02 MPa, and the stirring speed was 75 rpm for 24 hours. Complete secondary seed expansion culture. The seed solution of the secondary seed tank was connected to a fermentor containing the sterilized medium according to a 3% inoculum.
The fermentation process has a culture temperature of 28 ° C, aeration of 1 vvm, a can pressure of 0.02 MPa, a stirring speed of 75 rpm, a carbon source containing 30% of the pretreated crude glycerin, a glucose concentration of 5 g/L, and a nitrogen source. Fermentation culture. During the fermentation process, the glucose concentration, pH, bacterial biomass, crude oil production and DHA yield of the fermentation broth were measured.
After 96 hours of culture, the fermentation was terminated. Table 1 below shows the biomass, crude oil production, DHA production and DHA productivity of the three strains cultured in the original culture mode. Table 2 below shows the mixed fat and fatty acid composition of the gas obtained after fermentation. Analysis results. The biomass, crude oil production and DHA production of CGMCC No.6843 are also shown in Figure 3.
Table 1: Fermentation results of different strains in the original culture mode
Table 2: 100m 3 fermenter original culture method
It can be seen from Table 1 and Table 2 that the yield and fatty acid composition of the three strains are different in the original culture mode, and the Schizochytrium sp. CGMCC No. 6843 is superior to the other two strains. Schizochytrid sp. (Schizochytrium sp. CGMCC No. 6843) was used as the starting strain to optimize the different culture methods.

PATENT

CN106635405

https://patents.google.com/patent/CN106635405A/zh

PATENT

WO2012153345

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012153345

PAPER

NMR

Organic Chemistry 2014 vol. 2014  21 pg. 4548 – 4561

Patent

WO 2015162265

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015162265&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

1 H NMR (500 MHz; CDCI3) δΗ 5.43-5.30 (m, 12H, CH=CH), 2.85-2.80 (m, 10H, CH2 bis-allylic), 2.42-2.40 (m, 4H, CH2-C=0, CH2 allylic), 2.07 (quint, J = 7.5 Hz, 2H, CH2 allylic), 0.98 (t, J = 7.5 Hz, 3H, CH3)

Image result for doconexent

Patent

Publication numberPriority datePublication dateAssigneeTitle
JPS60133094A *1983-12-211985-07-16Nisshin Oil Mills LtdManufacture of high purity eicosapentaenoic acid
JPH07242895A *1993-03-161995-09-19Ikeda Shiyotsuken KkEicosapentaenoic acid of high purity and isolation and purification of lower alcohol ester thereof
JPH09238693A *1996-03-071997-09-16Maruha CorpPurification of highly unsaturated fatty acid
JPH10139718A *1996-11-071998-05-26Kaiyo Bio Technol Kenkyusho:KkProduction of eicosapentaenoic acid
JP2004089048A *2002-08-302004-03-25National Institute Of Advanced Industrial & TechnologyNew labyrinthulacese microorganism and method for producing 4,7,10,13,16-docosapentaenoic acid therewith
JP2007089522A *2005-09-292007-04-12Hisahiro NagaoMethod for producing fatty acid composition containing specific highly unsaturated fatty acid in concentrated state
WO2013172346A1 *2012-05-142013-11-21日本水産株式会社Highly unsaturated fatty acid or highly unsaturated fatty acid ethyl ester with reduced environmental pollutants, and method for producing same
Family To Family Citations
CA2930897A1 *2013-12-042015-06-11Nippon Suisan Kaisha, Ltd.Dihomo-gamma-linolenic acid-containing microbial oil and dihomo-gamma-linolenic acid-containing microbial biomass

References

  1. Jump up^ Guesnet P, Alessandri JM (2011). “Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) – Implications for dietary recommendations”. Biochimie93(1): 7–12. doi:10.1016/j.biochi.2010.05.005PMID 20478353.
  2. Jump up^ “Archived copy”. Archived from the original on 2013-07-07. Retrieved 2012-04-21.
  3. Jump up^ The omega end is the one furthest from the carboxyl group.
  4. Jump up^ Martek Biosciences Corporation (5 April 2007). “History of Martek”. Archived from the original on February 5, 2007. Retrieved March 10, 2007.
  5. Jump up^ Martek Biosciences Corporation (29 July 2008). “Martek Products”. Archived from the original on June 12, 2008. Retrieved July 29, 2008.
  6. Jump up to:a b c d Burdge, G. C.; Jones, A. E.; Wootton, S. A. (2002). “Eicosapentaenoic and docosapentaenoic acids are the principal products of α-linolenic acid metabolism in young men”. British Journal of Nutrition88 (4): 355–363. doi:10.1079/BJN2002662PMID 12323085.
  7. Jump up to:a b Burdge, G. C.; Wootton, S. A. (2002). “Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women”. British Journal of Nutrition88 (4): 411–20. doi:10.1079/BJN2002689PMID 12323090.
  8. Jump up^ Malone, J. Patrick (2012). “The Systems Theory of Autistogenesis: Putting the Pieces Together”. SAGE Open2 (2). doi:10.1177/2158244012444281.
  9. Jump up^ Giltay EJ, Gooren LJ, Toorians AW, Katan MB, Zock PL (2004). “Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects”The American Journal of Clinical Nutrition80 (5): 1167–74. PMID 15531662.
  10. Jump up^ Cederholm T, Salem N Jr, Palmblad J (2013). “ω-3 fatty acids in the prevention of cognitive decline in humans”Adv Nutr4 (6): 672–6. doi:10.3945/an.113.004556PMC 3823515Freely accessiblePMID 24228198.
  11. Jump up^ Zimmer, Carl (September 17, 2015). “Inuit Study Adds Twist to Omega-3 Fatty Acids’ Health Story”New York Times. Retrieved October 11, 2015.
  12. Jump up^ O’Connor, Anahad (March 30, 2015). “Fish Oil Claims Not Supported by Research”New York Times. Retrieved October 11, 2015.
  13. Jump up^ Grey, Andrew; Bolland, Mark (March 2014). “Clinical Trial Evidence and Use of Fish Oil Supplements”JAMA Internal Medicine174 (3): 460–462. doi:10.1001/jamainternmed.2013.12765PMID 24352849. Retrieved October 11, 2015.
  14. Jump up^ Meharban Singh (March 2005). “Essential Fatty Acids, DHA and the Human Brain from the Indian Journal of Pediatrics, Volume 72” (PDF). Retrieved October 8, 2007.
  15. Jump up^ Arthur A. Spector (1999). “Essentiality of Fatty Acids from Lipids, Vol. 34”doi:10.1007/BF02562220. Retrieved October 8, 2007.
  16. Jump up^ Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (October 2005). “A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease”J Clin Invest115 (10): 2774–83. doi:10.1172/JCI25420PMC 1199531Freely accessiblePMID 16151530.
  17. Jump up^ Serhan CN, Gotlinger K, Hong S, Arita M (2004). “Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: an overview of their protective roles in catabasis”. Prostaglandins Other Lipid Mediat73 (3–4): 155–72. doi:10.1016/j.prostaglandins.2004.03.005PMID 15290791.
  18. Jump up^ McNamara RK, Hahn CG, Jandacek R, et al. (2007). “Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder”. Biol. Psychiatry62 (1): 17–24. doi:10.1016/j.biopsych.2006.08.026PMID 17188654.
  19. Jump up^ McNamara, R. K.; Jandacek, R; Tso, P; Dwivedi, Y; Ren, X; Pandey, G. N. (2013). “Lower docosahexaenoic acid concentrations in the postmortem prefrontal cortex of adult depressed suicide victims compared with controls without cardiovascular disease”Journal of Psychiatric Research47 (9): 1187–91. doi:10.1016/j.jpsychires.2013.05.007PMC 3710518Freely accessiblePMID 23759469.
  20. Jump up^ De Caterina, R; Basta, G (June 2001). “n-3 Fatty acids and the inflammatory response – biological background”. European Heart Journal Supplements3 (Supplement D): D42–D49. doi:10.1016/S1520-765X(01)90118-X.
  21. Jump up^ A Voss; M Reinhart; S Sankarappa; H Sprecher (October 1991). “The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase”The Journal of Biological Chemistry266 (30): 19995–20000. PMID 1834642. Retrieved January 2, 2011.
  22. Jump up^ “Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): two distinct pathways”Prostaglandins, Leukotrienes and Essential Fatty Acids68 (2): 181–186. 2003-02-01. doi:10.1016/S0952-3278(02)00268-5ISSN 0952-3278.
  23. Jump up^ Kuda, Ondrej (2017). “Bioactive metabolites of docosahexaenoic acid”Biochimie136: 12–20. doi:10.1016/j.biochi.2017.01.002. Retrieved 31 January 2017.
  24. Jump up^ Westphal C, Konkel A, Schunck WH (Nov 2011). “CYP-eicosanoids–a new link between omega-3 fatty acids and cardiac disease?”. Prostaglandins & Other Lipid Mediators96 (1–4): 99–108. doi:10.1016/j.prostaglandins.2011.09.001PMID 21945326.
  25. Jump up^ Quinn JF, Raman R, Thomas RG, et al. (November 2010). “Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial”JAMA304 (17): 1903–11. doi:10.1001/jama.2010.1510PMC 3259852Freely accessiblePMID 21045096.
  26. Jump up^ Yurko-Mauro, K; McCarthy, D; Rom, D; Nelson, E. B.; Ryan, A. S.; Blackwell, A; Salem Jr, N; Stedman, M; Midas, Investigators (2010). “Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline”. Alzheimer’s & Dementia6 (6): 456–64. doi:10.1016/j.jalz.2010.01.013PMID 20434961.
  27. Jump up^ Matthew, Muldoon; Christopher M. Ryan; Lei Sheu; Jeffrey K. Yao; Sarah M. Conklin; Stephen B. Manuck (2010). “Serum Phospholipid Docosahexaenonic Acid Is Associated with Cognitive Functioning during Middle Adulthood”Journal of Nutrition140 (4): 848–53. doi:10.3945/jn.109.119578PMC 2838625Freely accessiblePMID 20181791.
  28. Jump up^ Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, Ryan P (2010). “Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial”. JAMA304 (15): 1675–83. doi:10.1001/jama.2010.1507PMID 20959577.
  29. Jump up^ Rayapudi S, Schwartz SG, Wang X, Chavis P (2013). “Vitamin A and fish oils for retinitis pigmentosa”Cochrane Database Syst Rev12 (12): CD008428. doi:10.1002/14651858.CD008428.pub2PMC 4259575Freely accessiblePMID 24357340.
  30. Jump up^ Ganança, L; Galfalvy, HC; Oquendo, MA; Hezghia, A; Cooper, TB; Mann, JJ; Sublette, ME. “Lipid correlates of antidepressant response to omega-3 polyunsaturated fatty acid supplementation: A pilot study”. Prostaglandins Leukot Essent Fatty Acids119: 38–44. doi:10.1016/j.plefa.2017.03.004PMID 28410668.
  31. Jump up^ Harvard School Of Public Health. “Omega-3 Fatty Acids: An Essential Contribution”. Retrieved 12 June 2015.
  32. Jump up^ Denomme J, Stark KD, Holub BJ (2005). “Directly quantitated dietary (n-3) fatty acid intakes of pregnant Canadian women are lower than current dietary recommendations”The Journal of Nutrition135 (2): 206–11. PMID 15671214.
  33. Jump up^ Gould, Jacqueline F.; Treyvaud, Karli; Yelland, Lisa N.; Anderson, Peter J.; Smithers, Lisa G.; McPhee, Andrew J.; Makrides, Maria (2017-03-21). “Seven-Year Follow-up of Children Born to Women in a Randomized Trial of Prenatal DHA Supplementation”JAMA317(11): 1173. doi:10.1001/jama.2016.21303ISSN 0098-7484.
  34. Jump up^ Kelley, DS (Mar 2009). “DHA supplementation decreases serum C-reactive protein and other markers of inflammation in hypertriglyceridemic men”J Nutr139 (3): 495–501. doi:10.3945/jn.108.100354PMC 2646223Freely accessiblePMID 19158225.
  35. Jump up to:a b “EPA and DHA Content of Fish Species. Appendix G2”. US Department of Agriculture. 2005. Retrieved 15 September 2013.
  36. Jump up^ “Beef, variety meats and by-products, brain, cooked, simmered”. Retrieved 2011-10-27.
  37. Jump up^ Jones, John. “Nutritional Products from Space Research”May 1st, 2001. NASA.
  38. Jump up^ “FDA: Why is there interest in adding DHA and ARA to infant formulas?”. US Food & Drug Administration. Retrieved 1 July 2002.
  39. Jump up^ “FDA Announces Qualified Health Claims for Omega-3 Fatty Acids”. US Food & Drug Administration.
  40. Jump up^ Rivlin, Gary (2007-01-14). “Magical or Overrated? A Food Additive in a Swirl”The New York Times. Retrieved 2007-01-15.
  41. Jump up to:a b Sanders, T. A. (2009). “DHA status of vegetarians”. Prostaglandins, Leukotrienes and Essential Fatty Acids81 (2–3): 137–41. doi:10.1016/j.plefa.2009.05.013PMID 19500961.
  42. Jump up^ Lane, K; Derbyshire, E; Li, W; Brennan, C (2014). “Bioavailability and potential uses of vegetarian sources of omega-3 fatty acids: A review of the literature”. Critical Reviews in Food Science and Nutrition54 (5): 572–9. doi:10.1080/10408398.2011.596292PMID 24261532.
  43. Jump up^ Benjamin B Albert (21 January 2015). “Fish oil supplements in New Zealand are highly oxidised and do not meet label content of n-3 PUFA release”Scientific Reports5: 7928. doi:10.1038/srep07928.
  44. Jump up^ Albert, Benjamin B.; Cameron-Smith, David; Hofman, Paul L.; Cutfield, Wayne S. (2013). “Oxidation of Marine Omega-3 Supplements and Human Health”BioMed Research International2013: 1–8. doi:10.1155/2013/464921PMC 3657456Freely accessiblePMID 23738326.
  45. Jump up^ Crawford, M; et al. (2000). “Evidence for the unique function of docosahexaenoic acid (DHA) during the evolution of the modern hominid brain”. Lipids34 (S1): S39–S47. doi:10.1007/BF02562227PMID 10419087.
  46. Jump up^ Carlson BA, Kingston JD (2007). “Docosahexaenoic acid biosynthesis and dietary contingency: Encephalization without aquatic constraint”. Am. J. Hum. Biol19 (4): 585–8. doi:10.1002/ajhb.20683PMID 17546613.

External links

REFERENCE

  1. Calder PC: Omega-3 fatty acids and inflammatory processes. Nutrients. 2010 Mar;2(3):355-74. doi: 10.3390/nu2030355. Epub 2010 Mar 18. [PubMed:22254027]
  2. Kim HY: Novel metabolism of docosahexaenoic acid in neural cells. J Biol Chem. 2007 Jun 29;282(26):18661-5. Epub 2007 May 8. [PubMed:17488715]
  3. Picq M, Chen P, Perez M, Michaud M, Vericel E, Guichardant M, Lagarde M: DHA metabolism: targeting the brain and lipoxygenation. Mol Neurobiol. 2010 Aug;42(1):48-51. doi: 10.1007/s12035-010-8131-7. Epub 2010 Apr 28. [PubMed:20422316]
  4. Butovich IA, Lukyanova SM, Bachmann C: Dihydroxydocosahexaenoic acids of the neuroprotectin D family: synthesis, structure, and inhibition of human 5-lipoxygenase. J Lipid Res. 2006 Nov;47(11):2462-74. Epub 2006 Aug 9. [PubMed:16899822]
  5. Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, Yang R, Colgan SP, Petasis NA: Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol. 2006 Feb 1;176(3):1848-59. [PubMed:16424216]
  6. Mas E, Croft KD, Zahra P, Barden A, Mori TA: Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin Chem. 2012 Oct;58(10):1476-84. Epub 2012 Aug 21. [PubMed:22912397]
  7. Chen CT, Kitson AP, Hopperton KE, Domenichiello AF, Trepanier MO, Lin LE, Ermini L, Post M, Thies F, Bazinet RP: Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain. Sci Rep. 2015 Oct 29;5:15791. doi: 10.1038/srep15791. [PubMed:26511533]
  8. Pawlosky RJ, Hibbeln JR, Novotny JA, Salem N Jr: Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res. 2001 Aug;42(8):1257-65. [PubMed:11483627]
  9. Pawlosky RJ, Hibbeln JR, Salem N Jr: Compartmental analyses of plasma n-3 essential fatty acids among male and female smokers and nonsmokers. J Lipid Res. 2007 Apr;48(4):935-43. Epub 2007 Jan 17. [PubMed:17234605]
  10. Cederholm T, Salem N Jr, Palmblad J: omega-3 fatty acids in the prevention of cognitive decline in humans. Adv Nutr. 2013 Nov 6;4(6):672-6. doi: 10.3945/an.113.004556. eCollection 2013 Nov. [PubMed:24228198]
  11. Guesnet P, Alessandri JM: Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) – Implications for dietary recommendations. Biochimie. 2011 Jan;93(1):7-12. doi: 10.1016/j.biochi.2010.05.005. Epub 2010 May 15. [PubMed:20478353]
  12. Kelley DS, Siegel D, Fedor DM, Adkins Y, Mackey BE: DHA supplementation decreases serum C-reactive protein and other markers of inflammation in hypertriglyceridemic men. J Nutr. 2009 Mar;139(3):495-501. doi: 10.3945/jn.108.100354. Epub 2009 Jan 21. [PubMed:19158225]
  13. Arterburn LM, Hall EB, Oken H: Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr. 2006 Jun;83(6 Suppl):1467S-1476S. [PubMed:16841856]
Docosahexaenoic acid
DHA numbers.svg
Docosahexaenoic-acid-3D-balls.png
Docosahexaenoic-acid-3D-sf.png
Names
IUPAC name
(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid
Other names
cervonic acid
DHA
doconexent (INN)
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.118.398
PubChem CID
UNII
Properties
C22H32O2
Molar mass 328.488 g/mol
Density 0.943 g/cm3
Melting point −44 °C (−47 °F; 229 K)
Boiling point 446.7 °C (836.1 °F; 719.8 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

///////////Docosahexaenoic acid (22:6(n-3)), ZAD9OKH9JC, доконексен, دوكونيكسانت 二十二碳六烯酸 Doconexent, 6217-54-5, cervonic acid, DHA, doconexent, 81926-93-4

 

  • all-Z-Docosahexaenoic acid
  • AquaGrow Advantage
  • CCRIS 7670
  • Cervonic acid
  • DHA
  • Doconexent
  • Doconexento
  • Doconexento [INN-Spanish]
  • Doconexentum
  • Doconexentum [INN-Latin]
  • Docosahexaenoic acid (all-Z)
  • Doxonexent
  • Efalex
  • Marinol D 50TG
  • Martek DHA HM
  • Monolife 50
  • Ropufa 60
  • UNII-ZAD9OKH9JC

CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O

6
Promega
308064-99-5
2D chemical structure of 308064-99-5
MW: 644.9746
7
4,7,10,13,16,19-Docosahexaenoic acid, (4E,7E,10E,13E,16E,19E)-
391921-09-8
2D chemical structure of 391921-09-8
MW: 328.4928
8
Algal DHA
2D chemical structure of A320050000
MW: 328.4928
9
Omega-3 Fatty Acids
2D chemical structure of F005100000
MW: 909.3808
4,7,10,13,16,19-Docosahexaenoic acid
2091-24-9
2D chemical structure of 2091-24-9
MW: 328.493
2
Doconexent [INN]
6217-54-5
2D chemical structure of 6217-54-5
MW: 328.4928
3
Docosahexaenoic acid, (Z,Z,Z,Z,Z,Z)-
32839-18-2
2D chemical structure of 32839-18-2
MW: 328.493
4
Doconexent sodium
81926-93-4
2D chemical structure of 81926-93-4
MW: 350.4749
5
(14C)Docosahexaenoic acid
93470-46-3
2D chemical structure of 93470-46-3
MW: 328.493

Acamprosate calcium, アカンプロセート

$
0
0

Acamprosate CalciumSkeletal formula of acamprosateThumb

ChemSpider 2D Image | Acamprosate | C5H11NO4SAcamprosate.pngImage result for Acamprosate synthesis

Acamprosate calcium

Molecular Formula: C10H20CaN2O8S2
Molecular Weight: 400.474 g/mol

3-acetamidopropane-1-sulfonic acid

Campral [Trade name]
Ethanimidic acid, N-(3-sulfopropyl)-, (1Z)- [ACD/Index Name]
N4K14YGM3J
N-Acetylhomotaurine
アカンプロセート
INGREDIENT UNII CAS fre form

Cas 77337-76-9

181.21

C5H11NO4S

Acamprosate Calcium 59375N1D0U 77337-73-6

Acamprosate, sold under the brand name Campral, is a medication used along with counselling to treat alcohol dependence.[1][2]

Acamprosate, also known by the brand name Campral™, is a drug used for treating alcohol dependence. Acamprosate is thought to stabilize the chemical balance in the brain that would otherwise be disrupted by alcoholism, possibly by blocking glutaminergic N-methyl-D-aspartate receptors, while gamma-aminobutyric acid type A receptors are activated. Reports indicate that acamprosate only works with a combination of attending support groups and abstinence from alcohol. Certain serious side effects include allergic reactions, irregular heartbeats, and low or high blood pressure, while less serious side effects include headaches, insomnia, and impotence. Acamprosate should not be taken by people with kidney problems or allergies to the drug.

Acamprosate is thought to stabilize chemical signaling in the brain that would otherwise be disrupted by alcohol withdrawal.[3] When used alone, acamprosate is not an effective therapy for alcoholism in most individuals;[4] however, studies have found that acamprosate works best when used in combination with psychosocial support since it facilitates a reduction in alcohol consumption as well as full abstinence.[2][5][6]

Serious side effects include allergic reactionsabnormal heart rhythms, and low or high blood pressure, while less serious side effects include headachesinsomnia, and impotence.[7] Diarrhea is the most common side-effect.[8] Acamprosate should not be taken by people with kidney problems or allergies to the drug.[9]

Until it became a generic in the United States, Campral was manufactured and marketed in the United States by Forest Laboratories, while Merck KGaA markets it outside the US.

Medical uses

Acamprosate is useful when used along with counselling in the treatment of alcohol dependence.[2] Over three to twelve months it increases the number of people who do not drink at all and the number of days without alcohol.[2] It appears to work as well as naltrexone.[2]

Contraindications

Acamprosate is primarily removed by the kidneys and should not be given to people with severely impaired kidneys (creatinine clearance less than 30 mL/min). A dose reduction is suggested in those with moderately impaired kidneys (creatinine clearancebetween 30 mL/min and 50 mL/min).[1][10] It is also contraindicated in those who have a strong allergic reaction to acamprosate calcium or any of its components.[10]

Adverse effects

The US label carries warnings about increased of suicidal behavior, major depressive disorder, and kidney failure.[1]

Adverse effects that caused people to stop taking the drug in clinical trials included diarrhea, nausea, depression, and anxiety.[1]

Other frequent adverse effects include headache, stomach pain, back pain, muscle pain, joint pain, chest pain, infections, flu-like symptoms, chills, heart palpitations, high blood pressure, fainting, vomiting, upset stomach, constipation, increased appetite, weight gain, edema, sleepiness, decreased sex drive, impotence, forgetfulness, abnormal thinking, abnormal vision, distorted sense of taste, tremors, runny nose, coughing, difficulty breathing, sore throat, bronchitis, and rashes.[1]

Pharmacology

Acamprosate calcium

Pharmacodynamics

The pharmacodynamics of acamprosate is complex and not fully understood;[11][12][13] however, it is believed to act as an NMDA receptor antagonist and positive allosteric modulator of GABAA receptors.[12][13]

Ethanol and benzodiazepines act on the central nervous system by binding to the GABAA receptor, increasing the effects of the inhibitory neurotransmitter GABA (i.e., they act as positive allosteric modulators at these receptors).[12][4] In chronic alcohol abuse, one of the main mechanisms of tolerance is attributed to GABAA receptors becoming downregulated (i.e. these receptors become less sensitive to GABA).[4] When alcohol is no longer consumed, these down-regulated GABAA receptor complexes are so insensitive to GABA that the typical amount of GABA produced has little effect, leading to physical withdrawal symptoms;[4] since GABA normally inhibits neural firing, GABAA receptor desensitization results in unopposed excitatory neurotransmission (i.e., fewer inhibitory postsynaptic potentialsoccur through GABAA receptors), leading to neuronal over-excitation (i.e., more action potentials in the postsynaptic neuron). One of acamprosate’s mechanisms of action is the enhancement of GABA signaling at GABAA receptors via positive allosteric receptor modulation.[12][13] It has been purported to open the chloride ion channel in a novel way as it does not require GABA as a cofactor, making it less liable for dependence than benzodiazepines. Acamprosate has been successfully used to control tinnitus, hyperacusis, ear pain and inner ear pressure during alcohol use due to spasms of the tensor tympani muscle.[medical citation needed]

In addition, alcohol also inhibits the activity of N-methyl-D-aspartate receptors (NMDARs).[14][15] Chronic alcohol consumption leads to the overproduction (upregulation) of these receptors. Thereafter, sudden alcohol abstinence causes the excessive numbers of NMDARs to be more active than normal and to contribute to the symptoms of delirium tremensand excitotoxic neuronal death.[16] Withdrawal from alcohol induces a surge in release of excitatory neurotransmitters like glutamate, which activates NMDARs.[17] Acamprosate reduces this glutamate surge.[18] The drug also protects cultured cells from excitotoxicity induced by ethanol withdrawal[19] and from glutamate exposure combined with ethanol withdrawal.[20]

Pharmacokinetics

Acamprosate is not metabolized by the human body.[13] Acamprosate’s absolute bioavailability from oral administration is approximately 11%.[13] Following administration and absorption of acamprosate, it is excreted unchanged (i.e., as acamprosate) via the kidneys.[13]

History

Acamprosate was developed by Lipha, a subsidiary of Merck KGaA.[21] and was approved for marketing in Europe in 1989.[citation needed]

In October 2001 Forest Laboratories acquired the rights to market the drug in the US.[21][22]

It was approved by the FDA in July 2004.[23]

The first generic versions of acamprosate were launched in the US in 2013.[24]

As of 2015 acamprosate was in development by Confluence Pharmaceuticals as a potential treatment for fragile X syndrome. The drug was granted orphan status for this use by the FDA in 2013 and by the EMA in 2014.[25]

Society and culture

“Acamprosate” is the INN and BAN for this substance. “Acamprosate calcium” is the USAN and JAN. It is also technically known as N-acetylhomotaurine or as calcium acetylhomotaurinate.

It is sold under the brand name Campral.[1]

Research

In addition to its apparent ability to help patients refrain from drinking, some evidence suggests that acamprosate is neuroprotective (that is, it protects neurons from damage and death caused by the effects of alcohol withdrawal, and possibly other causes of neurotoxicity).[18][26]

References

  1. Jump up to:a b c d e f g h i j k l m “Campral label” (PDF). FDA. January 2012. Retrieved 27 November2017. For label updates see FDA index page for NDA 021431
  2. Jump up to:a b c d e Plosker, GL (July 2015). “Acamprosate: A Review of Its Use in Alcohol Dependence”. Drugs75 (11): 1255–68. doi:10.1007/s40265-015-0423-9PMID 26084940.
  3. Jump up^ Williams, SH. (2005). “Medications for treating alcohol dependence”American Family Physician72 (9): 1775–1780. PMID 16300039.
  4. Jump up to:a b c d Malenka RC, Nestler EJ, Hyman SE, Holtzman DM (2015). “Chapter 16: Reinforcement and Addictive Disorders”. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). New York: McGraw-Hill Medical. ISBN 9780071827706It has been hypothesized that long-term ethanol exposure alters the expression or activity of specific GABAA receptor subunits in discrete brain regions. Regardless of the underlying mechanism, ethanol-induced decreases in GABAA receptor sensitivity are believed to contribute to ethanol tolerance, and also may mediate some aspects of physical dependence on ethanol. … Detoxification from ethanol typically involves the administration of benzodiazepines such as chlordiazepoxide, which exhibit cross-dependence with ethanol at GABAA receptors (Chapters 5 and 15). A dose that will prevent the physical symptoms associated with withdrawal from ethanol, including tachycardia, hypertension, tremor, agitation, and seizures, is given and is slowly tapered. Benzodiazepines are used because they are less reinforcing than ethanol among alcoholics. Moreover, the tapered use of a benzodiazepine with a long half-life makes the emergence of withdrawal symptoms less likely than direct withdrawal from ethanol. … Unfortunately, acamprosate is not adequately effective for most alcoholics.
  5. Jump up^ Mason, BJ (2001). “Treatment of alcohol-dependent outpatients with acamprosate: a clinical review”. The Journal of Clinical Psychiatry. 62 Suppl 20: 42–8. PMID 11584875.
  6. Jump up^ Nutt, DJ (2014). “Doing it by numbers: A simple approach to reducing the harms of alcohol”. JOURNAL OF PSYCHOPHARMACOLOGY28: 3–7. doi:10.1177/0269881113512038PMID 24399337.
  7. Jump up^ “Acamprosate”. drugs.com. 2005-03-25. Archived from the original on 22 December 2006. Retrieved 2007-01-08.
  8. Jump up^ Wilde, MI; Wagstaff, AJ (June 1997). “Acamprosate. A review of its pharmacology and clinical potential in the management of alcohol dependence after detoxification”. Drugs53(6): 1038–53. doi:10.2165/00003495-199753060-00008PMID 9179530.
  9. Jump up^ “Acamprosate Oral – Who should not take this medication?”. WebMD.com. Retrieved 2007-01-08.
  10. Jump up to:a b Saivin, S; Hulot, T; Chabac, S; Potgieter, A; Durbin, P; Houin, G (Nov 1998). “Clinical Pharmacokinetics of Acamprosate”. Clinical Pharmacokinetics35 (5): 331–345. doi:10.2165/00003088-199835050-00001PMID 9839087.
  11. Jump up^ “Acamprosate: Biological activity”IUPHAR/BPS Guide to Pharmacology. International Union of Basic and Clinical Pharmacology. Retrieved 26 November 2017Due to the complex nature of this drug’s MMOA, and a paucity of well defined target affinity data, we do not map to a primary drug target in this instance.
  12. Jump up to:a b c d “Acamprosate: Summary”IUPHAR/BPS Guide to Pharmacology. International Union of Basic and Clinical Pharmacology. Retrieved 26 November 2017Acamprosate is a NMDA glutamate receptor antagonist and a positive allosteric modulator of GABAA receptors.
    Marketed formulations contain acamprosate calcium
  13. Jump up to:a b c d e f “Acamprosate”DrugBank. University of Alberta. 19 November 2017. Retrieved 26 November 2017Acamprosate is thought to stabilize the chemical balance in the brain that would otherwise be disrupted by alcoholism, possibly by blocking glutaminergic N-methyl-D-aspartate receptors, while gamma-aminobutyric acid type A receptors are activated. … The mechanism of action of acamprosate in maintenance of alcohol abstinence is not completely understood. Chronic alcohol exposure is hypothesized to alter the normal balance between neuronal excitation and inhibition. in vitro and in vivostudies in animals have provided evidence to suggest acamprosate may interact with glutamate and GABA neurotransmitter systems centrally, and has led to the hypothesis that acamprosate restores this balance. It seems to inhibit NMDA receptors while activating GABA receptors.
  14. Jump up^ Malenka RC, Nestler EJ, Hyman SE (2009). “Chapter 15: Reinforcement and Addictive Disorders”. In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. 372. ISBN 9780071481274.
  15. Jump up^ Möykkynen T, Korpi ER (July 2012). “Acute effects of ethanol on glutamate receptors”. Basic & Clinical Pharmacology & Toxicology111 (1): 4–13. doi:10.1111/j.1742-7843.2012.00879.xPMID 22429661.
  16. Jump up^ Tsai, G; Coyle, JT (1998). “The role of glutamatergic neurotransmission in the pathophysiology of alcoholism”. Annual Review of Medicine49: 173–84. doi:10.1146/annurev.med.49.1.173PMID 9509257.
  17. Jump up^ Tsai, GE; Ragan, P; Chang, R; Chen, S; Linnoila, VM; Coyle, JT (1998). “Increased glutamatergic neurotransmission and oxidative stress after alcohol withdrawal”The American Journal of Psychiatry155 (6): 726–32. doi:10.1176/ajp.155.6.726PMID 9619143.
  18. Jump up to:a b De Witte, P; Littleton, J; Parot, P; Koob, G (2005). “Neuroprotective and abstinence-promoting effects of acamprosate: elucidating the mechanism of action”. CNS Drugs19 (6): 517–37. doi:10.2165/00023210-200519060-00004PMID 15963001.
  19. Jump up^ Mayer, S; Harris, BR; Gibson, DA; Blanchard, JA; Prendergast, MA; Holley, RC; Littleton, J (2002). “Acamprosate, MK-801, and ifenprodil inhibit neurotoxicity and calcium entry induced by ethanol withdrawal in organotypic slice cultures from neonatal rat hippocampus”. Alcoholism: Clinical and Experimental Research26 (10): 1468–78. doi:10.1097/00000374-200210000-00003PMID 12394279.
  20. Jump up^ Al Qatari, M; Khan, S; Harris, B; Littleton, J (2001). “Acamprosate is neuroprotective against glutamate-induced excitotoxicity when enhanced by ethanol withdrawal in neocortical cultures of fetal rat brain”. Alcoholism: Clinical and Experimental Research25(9): 1276–83. doi:10.1111/j.1530-0277.2001.tb02348.xPMID 11584146.
  21. Jump up to:a b Berfield, Susan (27 May 2002). “A CEO and His Son”Bloomberg Businessweek.
  22. Jump up^ “Press release: Forest Laboratories Announces Agreement For Alcohol Addiction Treatment”Forest Labs via Evaluate Group. October 23, 2001.
  23. Jump up^ “FDA Approves New Drug for Treatment of Alcoholism”FDA Talk PaperFood and Drug Administration. 2004-07-29. Archived from the original on 2008-01-17. Retrieved 2009-08-15.
  24. Jump up^ “Acamprosate generics”. DrugPatentWatch. Retrieved 27 November 2017.
  25. Jump up^ “Acamprosate – Confluence Pharmaceuticals – AdisInsight”. AdisInsight. Retrieved 27 November 2017.
  26. Jump up^ Mann K, Kiefer F, Spanagel R, Littleton J (July 2008). “Acamprosate: recent findings and future research directions”. Alcohol. Clin. Exp. Res32 (7): 1105–10. doi:10.1111/j.1530-0277.2008.00690.xPMID 18540918.
Title: Acamprosate Calcium
CAS Registry Number: 77337-73-6
CAS Name: 3-(Acetylamino)-1-propanesulfonic acid calcium salt (2:1)
Additional Names: calcium acetyl homotaurinate; Ca-AOTA; calcium bisacetyl homotaurine
Trademarks: Aotal (Merck KGaA); Campral (Merck Sant?
Molecular Formula: C10H20CaN2O8S2
Molecular Weight: 400.48
Percent Composition: C 29.99%, H 5.03%, Ca 10.01%, N 6.99%, O 31.96%, S 16.01%
Literature References: GABA (g-aminobutyric acid, q.v.) agonist. Prepn: J. P. Durlach, DE 3019350idem, US 4355043 (1980, 1982 both to Lab. Meram). Physicochemical and pharmacological study: C. Chabenat et al., Methods Find. Exp. Clin. Pharmacol.10, 311 (1988). Pharmacology: J. Durlach et al., ibid. 437; A. Guiet-Bara et al., Alcohol 5, 63 (1988). Suppression of ethanol intake in rats: F. Boismare et al., Pharmacol. Biochem. Behav. 21, 787 (1984); J. Le Magnen et al., Alcohol 4, 97 (1987). Evaluation of abuse potential: K. A. Grant, W. L. Woolverton, Pharmacol. Biochem. Behav. 32, 607 (1989). HPLC determn in plasma: C. Chabenat et al., J. Chromatogr. 414, 417 (1987). Clinical evaluation in relapse prevention in weaned alcoholics: J. P. L’Huintre et al., Lancet 1, 1014 (1985); J. P. L’Huintre et al., Alcohol Alcohol. 25, 613 (1990). Review of clinical efficacy in maintenance of abstinence in alcoholics: L. J. Scott et al., CNS Drugs 19, 445-464 (2005); of mechanism of action: P. De Witte et al., ibid. 517-537.
Properties: Colorless crystalline powder, mp 270°. uv max (water): 192 nm (e 7360). Freely sol in water. Practically insol in absolute ethanol, dichloromethane. LD50 i.p. in male mice: 1.87 g/kg (Durlach, 1982).
Melting point: mp 270°
Absorption maximum: uv max (water): 192 nm (e 7360)
Toxicity data: LD50 i.p. in male mice: 1.87 g/kg (Durlach, 1982)
Therap-Cat: In treatment of alcoholism.
Keywords: Alcohol Dependence Treatment.

 Acamprosate calcium

    • ATC:N07BB03
  • Use:alcohol-abuse deterrent
  • Chemical name:3-(acetylamino)-1-propanesulfonic acid calcium salt (2:1)
  • Formula:C10H20CaN2O8S2
  • MW:400.49 g/mol
  • CAS-RN:77337-73-6
  • EINECS:278-665-3
  • LD50:>10 g/kg (M, p.o.)

Derivatives

free acid

  • Formula:C5H11NO4S
  • MW:181.21 g/mol
  • CAS-RN:77337-76-9
  • EINECS:278-667-4

Substance Classes

Synthesis Path

Substances Referenced in Synthesis Path

CAS-RN Formula Chemical Name CAS Index Name
3687-18-1 C3H9NO3S 3-aminopropane-1-sulfonic acid 1-Propanesulfonic acid, 3-amino-
156-87-6 C3H9NO 3-amino-1-propanol 1-Propanol, 3-amino-

Trade Names

Country Trade Name Vendor Annotation
D Campral Merck
F Aotal Merck Lipha
GB Campral EC Merck Serono
USA Campral Forest

Formulations

  • tabl. 50 mg, 100 mg, 333 mg

References

    • DE 3 019 350 (Lab. Meram; appl. 21.5.1980; F-prior. 23.5.1979).
    • US 4 355 043 (Lab. Meram; 19.10.1982; F-prior. 23.5.1979).
  • synthesis of 3-aminopropane-1-sulfonic acid:

    • Fujii, A. et al.: J. Med. Chem. (JMCMAR) 18, 502 (1975).
    • JP 46 002 012 (Kowa; appl. 19.1.1971).
    • WO 8 400 958 (Mitsui; appl. 15.3.1984; J-prior. 7.9.1982, 19.7.1983, 8.9.1982).
Acamprosate
Skeletal formula of acamprosate
Ball-and-stick model of the acamprosate molecule
Clinical data
Trade names Campral EC
Synonyms N-Acetyl homotaurine, Acamprosate calcium (JAN JP), Acamprosate calcium (USANUS)
Pregnancy
category
Routes of
administration
Oral [1]
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • UK: POM (Prescription only)
  • US: ℞-only
Pharmacokinetic data
Bioavailability 11%[1]
Protein binding Negligible[1]
Metabolism Nil[1]
Elimination half-life 20 h to 33 h[1]
Excretion Renal[1]
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
ECHA InfoCard 100.071.495 Edit this at Wikidata
Chemical and physical data
Formula C5H11NO4S
Molar mass 181.211 g/mol
3D model (JSmol)
 NoYes (what is this?)  (verify)

Open Babel bond-line chemical structure with annotated hydrogens.<br>Click to toggle size.Image result for Acamprosate nmr

////////////////Acamprosate calcium, アカンプロセート

CC(=O)NCCCS(O)(=O)=O

CC(=O)NCCCS(=O)(=O)[O-].CC(=O)NCCCS(=O)(=O)[O-].[Ca+2]

FDA approves the first drug TPOXX (tecovirimat) with an indication for treatment of smallpox

$
0
0

WATCH OUT FOR CORRECT FORMATTING TEXT AND STRUCTURE BOTH IN 2-3 DAYS

ChemSpider 2D Image | Tecovirimat | C19H15F3N2O3

FDA approves the first drug with an indication for treatment of smallpox

The U.S. Food and Drug Administration today approved TPOXX (tecovirimat), the first drug with an indication for treatment of smallpox. Though the World Health Organization declared smallpox, a contagious and sometimes fatal infectious disease, eradicated in 1980, there have been longstanding concerns that smallpox could be used as a bioweapon.
“To address the risk of bioterrorism, Congress has taken steps to enable the development and approval of countermeasures to thwart pathogens that could be employed as weapons. Today’s approval provides an important milestone in these efforts. This new treatment affords us an additional option should smallpox ever be used as a bioweapon,” said FDA Commissioner Scott Gottlieb, M.D. “This is the first product to be awarded a Material Threat Medical Countermeasure priority review voucher.  Today’s action reflects the FDA’s commitment to ensuring that the U.S. is prepared for any public health emergency with timely, safe and effective medical products.”

July 13, 2018

Release

The U.S. Food and Drug Administration today approved TPOXX (tecovirimat), the first drug with an indication for treatment of smallpox. Though the World Health Organization declared smallpox, a contagious and sometimes fatal infectious disease, eradicated in 1980, there have been longstanding concerns that smallpox could be used as a bioweapon.

“To address the risk of bioterrorism, Congress has taken steps to enable the development and approval of countermeasures to thwart pathogens that could be employed as weapons. Today’s approval provides an important milestone in these efforts. This new treatment affords us an additional option should smallpox ever be used as a bioweapon,” said FDA Commissioner Scott Gottlieb, M.D. “This is the first product to be awarded a Material Threat Medical Countermeasure priority review voucher. Today’s action reflects the FDA’s commitment to ensuring that the U.S. is prepared for any public health emergency with timely, safe and effective medical products.”

Prior to its eradication in 1980, variola virus, the virus that causes smallpox, was mainly spread by direct contact between people. Symptoms typically began 10 to 14 days after infection and included fever, exhaustion, headache and backache. A rash initially consisting of small, pink bumps progressed to pus-filled sores before finally crusting over and scarring. Complications of smallpox could include encephalitis (inflammation of the brain), corneal ulcerations (an open sore on the clear, front surface of the eye) and blindness.

TPOXX’s effectiveness against smallpox was established by studies conducted in animals infected with viruses that are closely related to the virus that causes smallpox, and was based on measuring survival at the end of the studies. More animals treated with TPOXX lived compared to the animals treated with placebo. TPOXX was approved under the FDA’s Animal Rule, which allows efficacy findings from adequate and well-controlled animal studies to support an FDA approval when it is not feasible or ethical to conduct efficacy trials in humans.

The safety of TPOXX was evaluated in 359 healthy human volunteers without a smallpox infection. The most frequently reported side effects were headache, nausea and abdominal pain.

The FDA granted this application Fast Track and Priority Review designations. TPOXX also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases and a Material Threat Medical Countermeasure Priority Review Voucher, which provides additional incentives for certain medical products intended to treat or prevent harm from specific chemical, biological, radiological and nuclear threats.

The FDA granted approval of TPOXX to SIGA Technologies Inc.

TPOXX was developed in conjunction with the U.S. Department of Health and Human Services’ Biomedical Advanced Research and Development Authority (BARDA).

Tecovirimat

Tecovirimat.svg

 

Figure US08802714-20140812-C00014

Tecovirimat

4-trifluoromethyl-N-(3,3a,4,4a,5,5a,6,6a-octahydro-1,3-dioxo-4,6-ethenocycloprop(f)isoindol-2(1H)-yl)-benzamide

N- [(3aR,4R,4aR,5aS,6S, 6aS)- 3,3a,4,4a,5,5a,6,6a- octahydro-1,3-dioxo- 4,6- ethenocycloprop[f]iso- indol-2(1H)-yl]-4- (trifluoromethyl)- benzamide

4 -trifluoromethyl -N- (3, 3a, 4, 4a, 5, 5a, 6, 6a- octahydro-1, 3 -dioxo-4, 6 -ethenocycloprop [f] isoindol -2 ( 1H) -yl ) – benzamide

Details

NDA FILED IN  US

2006 ORPHAN DRUG DESIGNATION IN US FOR SMALL POX

2010 ORPHAN DRUG DESIGNATION IN US FOR ORTHOPOX VIRUS

A core protein cysteine protease inhibitor potentially for treatment of smallpox infection.

SIGA TECHNOLOGIES INNOVATOR
SIGA-246; ST-246

CAS No. 869572-92-9

C19H15F3N2O3,

376.32921 g/mol

The Orthopox genus (Orthopoxyiridae) is a member of the Poxyiridae family and the Choropoxivirinae subfamily. The genus consists of numerous viruses that cause significant disease in human and animal populations. Viruses in the orthopox genus include cowpox, monkeypox, vaccina, and variola (smallpox), all of which can infect humans.

The smallpox (variola) virus is of particular importance. Recent concerns over the use of smallpox virus as a biological weapon has underscored the necessity of developing small molecule therapeutics that target orthopoxviruses. Variola virus is highly transmissible and causes severe disease in humans resulting in high mortality rates (Henderson et al. (1999) JAMA. 281:2127-2137). Moreover, there is precedent for use of variola virus as a biological weapon. During the French and Indian wars (1754-1765), British soldiers distributed blankets used by smallpox patients to American Indians in order to establish epidemics (Stern, E. W. and Stern A. E. 1945. The effect of smallpox on the destiny of the Amerindian. Boston). The resulting outbreaks caused 50% mortality in some Indian tribes (Stern, E. W. and Stern A. E.). More recently, the soviet government launched a program to produce highly virulent weaponized forms of variola in aerosolized suspensions (Henderson, supra). Of more concern is the observation that recombinant forms of poxvirus have been developed that have the potential of causing disease in vaccinated animals (Jackson et al. (2001) J. Virol., 75:1205-1210).

The smallpox vaccine program was terminated in 1972; thus, many individuals are no longer immune to smallpox infection. Even vaccinated individuals may no longer be fully protected, especially against highly virulent or recombinant strains of virus (Downie and McCarthy. (1958) J. Hyg. 56:479-487; Jackson, supra). Therefore, mortality rates would be high if variola virus were reintroduced into the human population either deliberately or accidentally.

Variola virus is naturally transmitted via aerosolized droplets to the respiratory mucosa where replication in lymph tissue produces asymptomatic infection that lasts 1-3 days. Virus is disseminated through the lymph to the skin where replication in the small dermal blood vessels and subsequent infection and lysis of adjacent epidermal cells produces skin lesions (Moss, B. (1990) Poxyiridae and Their Replication, 2079-2111. In B. N. Fields and D. M. Knipe (eds.), Fields Virology. Raven Press, Ltd., New York). Two forms of disease are associated with variola virus infection; variola major, the most common form of disease, which produces a 30% mortality rate and variola minor, which is less prevalent and rarely leads to death (<1%). Mortality is the result of disseminated intravascular coagulation, hypotension, and cardiovascular collapse, that can be exacerbated by clotting defects in the rare hemorrhagic type of smallpox (Moss, supra).

A recent outbreak of monkeypox virus underscores the need for developing small molecule therapeutics that target viruses in the orthpox genus. Appearance of monkeypox in the US represents an emerging infection. Monkeypox and smallpox cause similar diseases in humans, however mortality for monkeypox is lower (1%).

Vaccination is the current means for preventing orthopox virus disease, particularly smallpox disease. The smallpox vaccine was developed using attenuated strains of vaccinia virus that replicate locally and provide protective immunity against variola virus in greater than 95% of vaccinated individuals (Modlin (2001) MMWR (Morb Mort Wkly Rep) 50:1-25). Adverse advents associated with vaccination occur frequently (1:5000) and include generalized vaccinia and inadvertent transfer of vaccinia from the vaccination site. More serious complications such as encephalitis occur at a rate of 1:300,000, which is often fatal (Modlin, supra). The risk of adverse events is even more pronounced in immunocompromised individuals (Engler et al. (2002) J Allergy Clin Immunol. 110:357-365). Thus, vaccination is contraindicated for people with AIDS or allergic skin diseases (Engler et al.). While protective immunity lasts for many years, the antibody response to smallpox vaccination is significantly reduced 10 to 15 years post inoculation (Downie, supra). In addition, vaccination may not be protective against recombinant forms of ortho poxvirus. A recent study showed that recombinant forms of mousepox virus that express IL-4 cause death in vaccinated mice (Jackson, supra). Given the side effects associated with vaccination, contraindication of immunocompromised individuals, and inability to protect against recombinant strains of virus, better preventatives and/or new therapeutics for treatment of smallpox virus infection are needed.

Vaccinia virus immunoglobulin (VIG) has been used for the treatment of post-vaccination complications. VIG is an isotonic sterile solution of immunoglobulin fraction of plasma derived from individuals who received the vaccinia virus vaccine. It is used to treat eczema vaccinatum and some forms of progressive vaccinia. Since this product is available in limited quantities and difficult to obtain, it has not been indicated for use in the event of a generalized smallpox outbreak (Modlin, supra).

Cidofovir ([(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine][HPMPC]) is a nucleoside analog approved for treatment of CMV retinitis in AIDS patients. Cidofovir has been shown to have activity in vitro against a number of DNA containing viruses including adenovirus, herpesviruses, hepadnaviruses, polyomaviruses, papillomaviruses, and ortho poxviruses (Bronson et al. (1990) Adv. Exp. Med. Biol. 278:277-83; De Clercq et al. (1987) Antiviral Res. 8:261-272; de Oliveira et al. (1996) Antiviral Res. 31:165-172; Snoeck et al. (2001) Clin Infect. Dis. 33:597-602). Cidofovir has also been found to inhibit authentic variola virus replication (Smee et al. (2002) Antimicrob. Agents Chemother. 46:1329-1335).

However, cidofovir administration is associated with a number of issues. Cidofovir is poorly bioavailable and must be administered intravenously (Lalezari et al. (1997) Ann. Intern. Med. 126:257-263). Moreover, cidofovir produces dose-limiting nephrotoxicity upon intravenous administration (Lalezari et al.). In addition, cidofovir-resistance has been noted for multiple viruses. Cidofovir-resistant cowpox, monkeypox, vaccinia, and camelpox virus variants have been isolated in the laboratory by repeated passage in the presence of drug (Smee, supra). Cidofovir-resistance represents a significant limitation for use of this compound to treat orthopoxvirus replication. Thus, the poor bioavailability, need for intravenous administration, and prevalence of resistant virus underscores the need for development of additional and alternative therapies to treat orthopoxvirus infection

In addition to viral polymerase inhibitors such as cidofovir, a number of other compounds have been reported to inhibit orthopoxvirus replication (De Clercq. (2001) Clin Microbiol. Rev. 14:382-397). Historically, methisazone, the prototypical thiosemicarbazone, has been used in the prophylactic treatment of smallpox infections (Bauer et al. (1969) Am. J. Epidemiol. 90:130-145). However, this compound class has not garnered much attention since the eradication of smallpox due to generally unacceptable side effects such as severe nausea and vomiting. Mechanism of action studies suggest that methisazone interferes with translation of L genes (De Clercq (2001), supra). Like cidofovir, methisazone is a relatively non-specific antiviral compound and can inhibit a number of other viruses including adenoviruses, picornaviruses, reoviruses, arboviruses, and myxoviruses (Id.).

Another class of compounds potentially useful for the treatment of poxviruses is represented by inhibitors of S-adenosylhomocysteine hydrolase (SAH). This enzyme is responsible for the conversion of S-adenosylhomocysteine to adenosine and homocysteine, a necessary step in the methylation and maturation of viral mRNA. Inhibitors of this enzyme have shown efficacy at inhibiting vaccinia virus in vitro and in vivo (De Clercq et al. (1998) Nucleosides Nucleotides. 17:625-634.). Structurally, all active inhibitors reported to date are analogues of the nucleoside adenosine. Many are carbocyclic derivatives, exemplified by Neplanacin A and 3-Deazaneplanacin A. While these compounds have shown some efficacy in animal models, like many nucleoside analogues, they suffer from general toxicity and/or poor pharmacokinetic properties (Coulombe et al. (1995) Eur. J. Drug Metab Pharmacokinet. 20:197-202; Obara et al. (1996) J. Med. Chem. 39:3847-3852). It is unlikely that these compounds can be administered orally, and it is currently unclear whether they can act prophylactically against smallpox infections. Identification of non-nucleoside inhibitors of SAH hydrolase, and other chemically tractable variola virus genome targets that are orally bioavailable and possess desirable pharmicokinetic (PK) and absorption, distribution, metabolism, elimination (ADME) properties would be a significant improvement over the reported nucleoside analogues. In summary, currently available compounds that inhibit smallpox virus replication are generally non-specific and suffer from use limiting toxicities and/or questionable efficacies.

In U.S. Pat. No. 6,433,016 (Aug. 13, 2002) and U.S. Application Publication 2002/0193443 A1 (published Dec. 19, 2002) a series of imidodisulfamide derivatives are described as being useful for orthopox virus infections.

Synthesis
str2

RAW MATERIAL

Key RM is, 4,6-Etheno-1H-cycloprop[f]isobenzofuran-1,3(3aH)-dione, 3a,4,4a,5,5a,6-hexahydro-, (3aR,4R,4aR,5aS,6S,6aS)-rel

cas  944-41-2, [US7655688]

SCHEMBL3192622.png

Molecular Formula: C11H10O3
Molecular Weight: 190.1953 g/mol
  • 4,6-Etheno-1H-cycloprop[f]isobenzofuran-1,3(3aH)-dione, 4,4a,5,5a,6,6a-hexahydro-, (3aα,4β,4aα,5aα,6β,6aα)-
  • Tricyclo[3.2.2.02,4]non-8-ene-6,7-dicarboxylic anhydride, stereoisomer (8CI)
  • 3,6-Cyclopropylene-Δ4-tetrahydrophthalic anhydride

MP 94-96 °C

Ref, Dong, Ming-xin; European Journal of Medicinal Chemistry 2010, V45(9), Pg 4096-4103

SMILES……….

O=C1OC(=O)[C@H]4[C@@H]1[C@H]3C=C[C@@H]4[C@@H]2C[C@@H]23

SYNTHESIS CONTINUED…….

ST-246

Patent

WO2014028545
 
 
 

The present invention provides a process for making ST-246 outlined in Scheme 1

P = Boc

Scheme 1

The present invention also provides a process for making ST-246 outlined in, Scheme 2

Scheme 2

The present invention further provides a process for making ST-246 outlined in Scheme 3

ST-246

P = Boc

Scheme 3

P = Boc

Scheme 4

The present invention further provides a process for making ST-246 outlined in

Scheme 5

Scheme 5

 

Example 1 : Synthetic Route I:

P = Boc

Scheme 1

Step A. Synthesis of Compound 6 (P = Boc)

To a mixture of compound 3 (5.0 g, 26.3 mmol, synthesized according to WO041 12718) in EtOH (80 mL, EMD, AX0441 -3) was added terf-butyl carbazate 5 (3.65 g, 27.6 mmol, Aldrich, 98%). The reaction mixture was heated to reflux for 4 h under nitrogen atmosphere. LC-MS analysis of the reaction mixture showed less than 5% of compound 3 remained. The reaction mixture was evaporated under reduced pressure. The residue was recrystallized from EtOAc – hexanes, the solid was filtered, washed with hexanes (50 mL) and dried under vacuum to afford compound 6 (3.1 g, 39% yield) as a white solid. The filtrate was concentrated and purified by column chromatography eluting with 25% EtOAc in hexanes to give an additional 3.64 g (46% yield) of compound 6 as a white solid. Total yield: 6.74 g (84% yield). 1H NMR in CDCI3: δ 6.30 (br s, 1 H), 5.79 (t, 2H), 3.43 (s, 2H), 3.04 (s, 2H), 1 .46 (s, 9H), 1 .06-1 .16 (m, 2H), 0.18-0.36 (m, 2H); Mass Spec: 327.2 (M+Na)+

Step B. Synthesis of Compound 7 (HCI salt)

Compound 6 (3.6 g, 1 1 .83 mmol) was dissolved in /-PrOAc (65 mL, Aldrich, 99.6%). 4M HCI in dioxane (10.4 mL, 41 .4 mmol, Aldrich) was added drop-wise to the above solution keeping the temperature below 20 °C. The reaction mixture was stirred at room temperature overnight (18 h) under nitrogen atmosphere. The resulting solid was filtered, washed with /-PrOAc (15 mL) and dried under vacuum to yield HCI salt of compound 7 (1 .9 g, 67% yield) as a white solid. The filtrate was concentrated to 1/3 its volume and stirred at 10 – 15 °C for 30 min. The solid was filtered, washed with minimal volume of /-PrOAc and dried to afford additional 0.6 g (21 % yield) of compound 7. Total yield: 2.5 g (88% yield). 1 H NMR in DMSO-d6: δ 6.72 (br s, 3H), 5.68 (m, 2H), 3.20 (s, 2H), 3.01 (s, 2H), 1 .07-1 .17 (m, 2H), 0.18-0.29 (m, 1 H), -0.01 -0.07 (m, 1 H); Mass Spec: 205.1 (M+H)+

Step C. Synthesis of ST-246

To a mixture of compound 7 (0.96 g, 4 mmol) in dry dichloromethane (19 mL) was added triethylamine (1 .17 mL, 8.4 mmol, Aldrich) keeping the temperature below 20 °C. The resulting solution was stirred for 5 minutes at 15 – 20 °C, to it was added drop-wise 4-(trifluoromethyl)benzoyl chloride 8 (0.63 mL, 4.2 mmol, Aldrich, 97%) and the reaction mixture was stirred at room temperature overnight (18 h). LC-MS and TLC analysis showed the correct molecular weight and Rf value of ST-246 but the reaction was not complete. Additional 0.3 mL (2 mmol, 0.5 eq) of 4-(trifluoromethyl)benzoyl chloride 8 was added to the reaction mixture at 15 – 20 °C. The reaction was then stirred at room temperature overnight (19 h). LC-MS analysis indicated ca. 5% of starting material 7 still remained. The reaction was stopped and dichloromethane (30 mL) was added. The organic phase was washed with water (30 mL), saturated aqueous NH CI (30 mL), water (15 mL) and saturated aqueous NaHCO3 (30 mL). The organic phase was separated, dried over Na2SO4, filtered and concentrated to give crude product. The crude product was purified by column chromatography eluting with 30 -50% EtOAc in hexanes to afford ST-246 (0.34 g, 23% yield) as an off-white solid. Analytical data (1H NMR, LC-MS and HPLC by co-injection) were matched with those of ST-246 synthesized according to WO041 12718 and were consistent.

Example 2: Synthetic Route II

Scheme 2

Step A. Synthesis of Compound 9

A mixture of compound 4 (2.0 g, 9.8 mmol) and maleic anhydride 2 (0.96 g, 9.8 mmol, Aldrich powder, 95%) in o-xylene (100 mL, Aldrich anhydrous, 97%) was heated to reflux using a Dean-Stark trap apparatus overnight. After 18 h, LC-MS analysis at 215 nm showed the desired product 9 (86%), an uncyclized product (2.6%) and a dimer by-product (1 1 .6%).

Uncyclized product (MS = 303) Dimer by-product (MS = 489)

The reaction mixture was cooled to 45 °C and evaporated under reduced pressure. The residue was dissolved in EtOAc (50 mL) and the insoluble solid (mostly uncyclized product) was removed by filtration. The filtrate was concentrated and purified by column chromatography eluting with 50% EtOAc in hexanes to yield compound 9 (1 .5 g, 54% yield) as an off-white solid. 1 H NMR in CDCI3: δ 8.44 (s, 1 H), 7.91 (d, 2H), 7.68 (d, 2H), 6.88 (s, 2H); Mass Spec: 285.1 (M+H)+

Step B. Synthesis of ST-246 (Route II)

A mixture of compound 9 (0.97 g, 3.4 mmol) and cycloheptatriene 1 (0.51 mL, 4.42 mmol, distilled before use, Aldrich tech 90%) in toluene (50 mL, Aldrich anhydrous) was heated at 95 °C under nitrogen atmosphere. After 1 .5 h at 95 °C, LC-MS analysis at 254 nm showed 29% conversion to the desired product (endo:exo = 94:6). The resulting solution was continued to be heated at same temperature overnight. After 18 h at 95 °C, LC-MS analysis indicated 75% conversion with an endo:exo ratio of 94:6. The reaction temperature was increased to 1 10 °C and the reaction was monitored. After heating at 1 10 °C for 7 h, LC-MS analysis at 254 nm showed 96.4% conversion to the desired product (endo:exo = 94:6). The volatiles were removed by evaporation under reduced pressure and the reside was purified by column chromatography eluting with 30% EtOAc in hexanes to afford ST-246 (0.29 g, 22.6% yield, HPLC area 99.7% pure and 100% endo isomer) as a white solid. Analytical data (1H NMR, LC-MS and HPLC by co-injection) were matched with those of ST-246 synthesized according to WO041 12718 and were consistent. An additional 0.5 g of ST-246 (38.9% yield, endo:exo = 97: 3) was recovered from column chromatography. Total Yield: 0.84 g (65.4% yield). 1H NMR of ST-246 exo isomer in CDCI3: δ 8.62 (s, 1 H), 7.92 (d, 2H), 7.68 (d, 2H), 5.96 (m, 2H), 3.43 (s, 2H), 2.88 (s, 2H), 1 .17 (s, 2H), 0.24 (q, 1 H), 0.13 (m, 1 H); Mass Spec: 377.1 (M+H)+

Example 3: Synthetic Route III

ST-246 9

P = Boc

Scheme 3

Step A. Synthesis of Compound 10

A mixture of maleic anhydride 2 (15.2 g, 155 mmol, Aldrich powder 95%) and terf-butyl carbazate 5 (20.5 g, 155 mmol, Aldrich, 98%) in anhydrous toluene (150 mL, Aldrich anhydrous) was heated to reflux using a Dean-Stark trap apparatus under nitrogen atmosphere. After refluxing for 2 h, no starting material 2 remained and LC-MS analysis at 254 nm showed the desired product 10 (20% by HPLC area), imine byproduct (18%) and disubstituted by-product (56%). The reaction mixture was concentrated and purified by column chromatography eluting with 25% EtOAc in hexanes to afford compound 10 (5.98 g, 18% yield, HPLC area >99.5% pure) as a white solid. 1 H NMR in DMSO-d6: δ 9.61 (s, 1 H), 7.16 (s, 2H), 1 .42 (s, 9H); Mass Spec: 235.1 (M+Na)+.

duct

C9H12N204 C14H22N405

Mol. Wt.: 212.2 Mol. Wt.: 326.35

Step B. Synthesis of Compound 11 (HCI salt)

Compound 10 (3.82 g, 18 mmol) was dissolved in /-PrOAc (57 mL, Aldrich, 99.6%). 4M HCI in dioxane (15.8 mL, 63 mmol, Aldrich) was added drop-wise to the above solution keeping the temperature below 20 °C. The solution was stirred overnight (24 h) at room temperature under nitrogen atmosphere. The resulting solid was filtered, washed with /-PrOAc (10 mL) and dried at 45 °C under vacuum for 1 h to afford HCI salt of compound 11 (2.39 g, 89% yield) as a white solid. 1 H NMR in CD3OD: δ 6.98 (s, 2H); Mass Spec: 1 13.0 (M+H)+

Step C. Synthesis of Compound 9 (Route III)

To a mixture of compound 11 (1 .19 g, 8 mmol) in dry dichloromethane (24 mL) was added diisopropylethylannine (2.93 mL, 16.8 mmol, Aldrich redistilled grade) keeping the temperature below 20 °C. The resulting solution was stirred for 5 minute at 15 – 20 °C and to it was added 4-(trifluoromethyl)benzoyl chloride 8 (1 .31 mL, 8.8 mmol, Aldrich, 97%) drop-wise. The reaction was stirred at room temperature for 5 h. LC-MS analysis showed the correct MW but the reaction was not complete. Additional 0.48 mL (0.4 equiv) of 4-(trifluoromethyl)benzoyl chloride 8 was added to the reaction mixture at 15 – 20 °C and the reaction mixture was stirred at room temperature overnight (21 h). The reaction was stopped and dichloromethane (50 mL) was added. The organic phase was washed with water (50 mL), saturated aqueous NH4CI (50 mL), water (30 mL) and saturated aqueous NaHCO3 (30 mL). The organic phase was separated, dried over Na2SO4, filtered and concentrated to give crude product. The crude product was purified by column chromatography eluting with 30 – 35% EtOAc in hexanes to afford compound 9 (0.8 g, 35% yield) as a light pink solid. Analytical data (1H NMR and LC-MS) were consistent with those of compound 9 obtained in Synthetic Route II.

Step D. Synthesis of ST-246 (Route III)

A mixture of compound 9 (0.5 g, 1 .76 mmol) and cycloheptatriene 1 (0.33 mL, 3.17 mmol, distilled before to use, Aldrich tech 90%) in toluene (10 mL, Aldrich anhydrous) was heated at 1 10 – 1 15 °C under nitrogen atmosphere. After 6 h, LC-MS analysis at 254 nm showed 95% conversion to the desired product (endo:exo = 94:6). The resulting solution was heated at same temperature overnight (22 h). LC-MS analysis at 254 nm showed no starting material 9 remained and the desired product (endo:exo = 93:7). The reaction mixture was concentrated and purified by column chromatography eluting with 25 – 35% EtOAc in hexanes to afford ST-246 (0.39 g, HPLC area >99.5% pure with a ratio of endo:exo = 99:1 ) as a white solid. Analytical data (1 H NMR, LC-MS and HPLC by co-injection) were compared with those of ST-246 synthesized according to WO041 12718 and were found to be consistent. An additional 0.18 g of ST-246 (HPLC area >99.5% pure, endo:exo = 91 : 9) was recovered from column chromatography. Total Yield: 0.57 g (86% yield).

Example 4 ; Synthetic Route IV:

P = Boc

Scheme 4

Step A. Synthesis of Compound 10

A mixture of maleic anhydride 2 (3.4 g, 34.67 mmol, Aldrich powder, 95%) and terf-butyl carbazate 5 (4.6 g, 34.67 mmol, Aldrich, 98%) in anhydrous toluene (51 ml_, Aldrich) was heated to reflux using a Dean-Stark trap apparatus under nitrogen atmosphere. After refluxing for 2.5 h, no starting material 2 remained and LC-MS analysis at 254 nm showed the desired product 10 (19% HPLC area), imine by-product (18%) and another by-product (56%). The reaction mixture was concentrated and purified by column chromatography eluting with 30% EtOAc in hexanes to afford compound 10 (1 .0 g, 13.6% yield, HPLC area >99% pure) as a white solid. Analytical data (1H NMR and LC-MS) were consistent with those of compound 10 obtained in Synthetic Route III.

Im ine by-product

Mol. Wt.: 212.2

Step B. Synthesis of Compound 6

A mixture of compound 10 (4.4 g, 20.74 mmol) and cycloheptatriene 1 (3.22 mL, 31 .1 mmol, distilled before to use, Aldrich tech 90%) in toluene (88 mL, 20 volume, Aldrich anhydrous) was heated at 95 °C under nitrogen atmosphere. After 15 h at 95 °C, LC-MS analysis showed 83% conversion to the desired product. The reaction mixture was heated at 105 °C overnight. After total 40 h at 95 – 105 °C, LC-MS analysis at 254 nm showed -99% conversion to the desired product (endo:exo = 93:7). The reaction mixture was concentrated and the crude was purified by column chromatography eluting with 25 – 50 % EtOAc in hexanes to afford compound 6 (2.06 g, 32.6% yield, HPLC area 99.9% pure and 100% endo isomer) as a white solid. 1 H NMR and LC-MS were consistent with those of compound 6 obtained in Synthetic Route I. An additional 4.0 g of 6 (63.4% yield, HPLC area 93% pure with a ratio of endo:exo = 91 : 9) was recovered from column chromatography. Total Yield: 6.06 g (96% yield).

Step C. Synthesis of Compound 7 (HCI salt)

Compound 6 (2.05 g, 6.74 mmol) was dissolved in /-PrOAc (26 mL, Aldrich, 99.6%). 4M HCI in dioxane (5.9 mL, 23.58 mmol, Aldrich) was added drop-wise to the above solution keeping the temperature below 20 °C. The solution was stirred overnight (18 h) at room temperature under nitrogen atmosphere. The resulting solid was filtered, washed with /-PrOAc (5 mL) and dried under vacuum to yield HCI salt of compound 7 (1 .57 g, 97% yield) as a white solid. Analytical data (1 H NMR and LC-MS) were consistent with those of compound 7 in Synthetic Route I.

Step D. Synthesis of ST-246 (Route IV)

To a mixture of compound 7 (0.84 g, 3.5 mmol) in dichloromethane (13 mL) was added diisopropylethylamine (1 .34 mL, 7.7 mmol) keeping the temperature below 20 °C and the resulting solution was stirred for 5 – 10 minutes. 4-(Trifluoromethyl)benzoyl chloride 8 (0.57 mL, 3.85 mmol, Aldrich, 97%) was added to above solution keeping the temperature below 20 °C. The reaction mixture was stirred at room temperature for 2 h. Additional 0.2 mL (0.4 equiv) of 4-(trifluoromethyl)benzoyl chloride 8 was added to the reaction keeping the temperature below 20 °C. The reaction was stirred at room temperature overnight (24 h). The reaction mixture was diluted with dichloromethane (20 mL). The organic phase was washed with water (20 mL), saturated aqueous NH4CI (20 mL), water (20 mL) and saturated aqueous NaHCO3 (20 mL). The organic phase was separated, dried over Na2SO4, filtered and concentrated to give crude product. The crude product was purified by column chromatography eluting with 30 – 35% EtOAc in hexanes to afford ST-246 (0.25 g, 19% yield, HPLC area >99.5% pure) as a white solid. Analytical data (1H NMR and LC-MS) were consistent with those of ST-246 synthesized according to WO041 12718.

Example 5: Synthetic Route V:

Scheme 5

Step A. Synthesis of Compound 13

To a mixture of compound 7 (1 .6 g, 6.65 mmol, synthesized according to Synthetic Route I) in dichloromethane (80 ml_,) was added triethylamine (2.04 ml_, 14.63 mmol) keeping the temperature below 20 °C and the resulting solution was stirred for 5 – 10 minute. 4-lodobenzoyl chloride 12 (1 .95 g, 7.31 mmol, 1 .1 equiv, Aldrich) was added portion-wise under nitrogen atmosphere to the above solution keeping the temperature below 20 °C. The reaction mixture was stirred at room temperature overnight. After 17 h and 19 h, additional 0.35 g (0.2 equiv) of acid chloride 12 was added to the reaction keeping the temperature below 20 °C. After 24 h, additional 0.18 g (0.1 equiv, used total 1 .6 equiv) of acid chloride 12 was added and the reaction was continued to stir at room temperature overnight (total 43 h). LC-MS analysis at 215 nm showed 43% of the desired product (13) and -5% of compound 7. The reaction was diluted with dichloromethane (100 ml_). The organic phase was washed with saturated aqueous NH4CI (100 ml_), water (100 ml_) and saturated aqueous NaHCO3 (100 ml_). The organic phase was separated, dried over Na2SO4, filtered and concentrated to give crude product. The crude product was purified by column chromatography eluting with 25 – 50% EtOAc in hexanes to afford compound 13 (1 .63 g, 57% yield, HPLC area 93% pure) as a white solid. 1 H NMR in DMSO-d6: δ 1 1 .19 and 10.93 (two singlets with integration ratio of 1 .73:1 , total of 1 H, same proton of two rotamers), 7.93 (d, 2H), 7.66 (d, 2H), 5.80 (s, 2H), 3.36 (s, 2H), 3.27 (s, 2H), 1 .18 (s, 2H), 0.27 (q, 1 H), 0.06 (s,1 H); Mass Spec: 435.0 (M+H)+

Step B. Synthesis of ST-246 (Route V)

Anhydrous DMF (6 ml_) was added to a mixture of compound 13 (0.2 g, 0.46 mmol), methyl 2, 2-difluoro-2-(fluorosulfonyl)acetate (0.44 ml_, 3.45 mmol, Aldrich) and copper (I) iodide (90 mg, 0.47 mmol). The reaction mixture was stirred at -90 °C for 4 h. LC-MS analysis at 254 nm indicated no starting material 13 remained and showed 48% HPLC area of ST-246. The reaction mixture was cooled to 45 °C and DMF was removed under reduced pressure. The residue was slurried in EtOAc (30 mL) and insoluble solid was removed by filtration. The filtrate was concentrated and purified by column chromatography eluting with 25 – 35% EtOAc in hexanes to afford ST-246 (55

mg, 32% yield, 95% pure by HPLC at 254 nm) as off-white solid. Analytical data (1H NMR and LC-MS) were consistent with those of ST-246 synthesized according to WO041 12718.

PAPER

N-(3,3a,4,4a,5,5a,6,6a-Octahydro-1,3-dioxo-4,6- ethenocycloprop[f]isoindol-2-(1H)-yl)carboxamides:  Identification of Novel Orthopoxvirus Egress Inhibitors

ViroPharma Incorporated, 397 Eagleview Boulevard, Exton, Pennsylvania 19341, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, University of Alabama, Birmingham, Alabama 35294, and SIGA Technologies, Inc., 4575 SW Research Way, Corvallis, Oregon 97333

J. Med. Chem.200750 (7), pp 1442–1444

DOI: 10.1021/jm061484y

Abstract Image

A series of novel, potent orthopoxvirus egress inhibitors was identified during high-throughput screening of the ViroPharma small molecule collection. Using structure−activity relationship information inferred from early hits, several compounds were synthesized, and compound 14was identified as a potent, orally bioavailable first-in-class inhibitor of orthopoxvirus egress from infected cells. Compound 14 has shown comparable efficaciousness in three murine orthopoxvirus models and has entered Phase I clinical trials.

http://pubs.acs.org/doi/suppl/10.1021/jm061484y/suppl_file/jm061484ysi20070204_060607.pdf

General Procedure for synthesis of compounds 2-14, 16-18.

N-(3,3a,4,4a,5,5a,6,6aoctahydro-1,3-dioxo-4,6-ethenocycloprop[f]isoindol-2(1H)-yl)-4- (trifluoromethyl)benzamide (14).

A mixture of 2.00 g (9.8 mmol) of 4-(trifluoromethyl) benzoic acid hydrazide, 1.86 g (9.8 mmol) of 4,4a,5,5a,6,6a-hexahydro-4,6-etheno-1Hcycloprop[f]isobenzofuran-1,3(3aH)-dione, and one drop of diisopropylethylamine in 40 mL of absolute ethanol was refluxed for 4.5 h. Upon cooling to rt, 4 mL of water was added, and the product began to crystallize. The suspension was cooled in an ice bath, and the precipitate collected by filtration. The crystalline solid was air-dried affording 3.20 g (87%) of the product as a white solid;

Mp 194-195 ºC. 1 H NMR, (300 MHz, d6 -DMSO) δ 11.20, 11.09 (2 brs from rotamers, 1H), 8.06 (d, J= 7.8 Hz, 2H), 7.90 (d, J= 7.8 Hz, 2H), 5.78 (m, 2H), 3.26 (m, 4H), 1.15 (m, 2H), 0.24 (dd, J= 7.2, 12.9 Hz, 1H), 0.04 (m, 1H).

Anal. calcd. for C19H15F3N2O3● 0.25H2O: %C, 59.92; %H, 4.10; %F, 14.97; %N, 7.36; %O, 13.65. Found: %C, 59.97; %H, 4.02; %F, 14.94; %N, 7.36; %O, 13.71.

CLICK ON IMAGE

PATENT

US20140316145

CLICK ON IMAGE

http://www.google.com/patents/US8802714

Example 1

Preparation of 4-trifluoromethyl-N-(3,3a,4,4a,5,5a,6,6a-octahydro-1,3-dioxo-4,6-ethenocycloprop[f]isoindol-2(1H)-yl)-benzamide

a. Preparation of Compounds 1(a) and 1(b).

Figure US08802714-20140812-C00010

A mixture of cycloheptatriene (5 g, 54.26 mmol) and maleic anhydride (6.13 g, 62.40 mmol) in xylenes (35 mL) was heated at reflux under argon overnight. The reaction was cooled to room temperature and a tan precipitate was collected by filtration and dried to give 2.94 grams (28%) of the desired product, which is a mixture of compounds 1(a) and 1(b). Compound 1(a) is normally predominant in this mixture and is at least 80% by weight. The purity of Compound 1(a) may be further enhanced by recrystallization if necessary. Compound 1(b), an isomer of compound 1(a) is normally less than 20% by weight and varies depending on the conditions of the reaction. Pure Compound 1(b) was obtained by concentrating the mother liquid to dryness and then subjecting the residue to column chromatography. Further purification can be carried out by recrystallization if necessary. 1H NMR (500 MHz) in CDCl3: δ 5.95 (m, 2H), 3.42 (m, 2H), 3.09 (m, 2H), 1.12 (m, 2H), 0.22 (m, 1H), 0.14 (m, 1H).

b. Preparation of N-[(3aR,4R,4aR,5aS,6S,6aS)-3,3a,4,4a,5,5a,6,6a-octahydro-1,3-dioxo-4,6-ethenocycloprop[f]isoindol-2(1H)-yl]-4-(trifluoromethyl)-benzamide. desired

A mixture of compound 1(a) (150 mg, 0.788 mmol) and 4-trifluoromethylbenzhydrazide (169 mg, 0.827 mmol) in ethanol (10 mL) was heated under argon overnight. The solvent was removed by rotary evaporation. Purification by column chromatography on silica gel using 1/1 hexane/ethyl acetate provided 152 mg (51%) of the product as a white solid.

c. Preparation of N-[(3aR,4S,4aS,5aR,6R,6aS)-3,3a,4,4a,5,5a,6,6a-octahydro-1,3-dioxo-4,6-ethenocycloprop[f]isoindol-2(1H)-yl]-4-(trifluoromethyl)-benzamide. UNWANTED

N-[(3aR,4S,4aS,5aR,6R,6aS)-3,3a,4,4a,5,5a,6,6a-octahydro-1,3-dioxo-4,6-ethenocycloprop[f]isoindol-2(1H)-yl]4-(trifluoromethyl)-benzamide was prepared and purified in the same fashion as for N-[(3aR,4R,4aR,5aS,6S,6aS)-3,3a,4,4a,5,5a,6,6a-octahydro-1,3-dioxo-4,6-ethenocycloprop[f]isoindol-2(1H)-yl]-4-(trifluoromethyl)-benzamide by replacing 1(a) with 1(b) and was obtained as a white solid. 1H NMR (300 MHz) in CDCl3: δ 8.62 (s, 1H), 7.92 (d, 2H), 7.68 (d, 2H), 5.96 (m, 2H), 3.43 (s, 2H), 2.88 (s, 2H), 1.17 (s, 2H), 0.24 (q, 1H), 0.13 (m, 1H); Mass Spec: 377.1 (M+H)+.

FINAL COMPD SYNTHESIS

TABLE 1
Example **Mass
Number R6 *NMR Spec Name
 1 1H NMR in DMSO-d6: δ 11.35 (d, 1H); 11.09 (d, 1H); 8.08 (d, 2H); 7.92 (d, 2H); 5.799 (s, 2H); 3.29 (brs, 4H); 1.17 (m, 2H); 0.26 (m, 1H); 0.078 (s, 1H) 375 (M − H)− N-[(3aR,4R,4aR,5aS,6S, 6aS)-3,3a,4,4a,5,5a,6,6a- octahydro-1,3-dioxo- 4,6-ethenocycloprop[f] isoindol-2(1H)-yl]-4- (trifluoromethyl)- benzamide

TABLE 1 EXAMPLE 1

N- [(3aR,4R,4aR,5aS,6S, 6aS)- 3,3a,4,4a,5,5a,6,6a- octahydro-1,3-dioxo- 4,6- ethenocycloprop[f]iso- indol-2(1H)-yl]-4- (trifluoromethyl)- benzamide

1H NMR in DMSO-d6: δ 11.35 (d, 1H); 11.09 (d, 1H); 8.08 (d, 2H); 7.92 (d, 2H); 5.799 (s, 2H); 3.29 (brs, 4H); 1.17 (m, 2H); 0.26 (m, 1H); 0.078 (s, 1H), 375 (M − H)

EXAMPLE 42 Characterization of 4-trifluoromethyl-N-(3,3a,4,4a,5,5a,6,6a-octahydro-1,3-dioxo-4,6-ethenocycloprop[f]isoindol-2(1H)-yl)-benzamide (“ ”)

In the present application, ST-246 refers to: N-[(3aR,4R,4aR,5aS,65,6aS)-3,3a,4,4a,5,5a,6,6a-octahydro-1,3-dioxo-4,6-ethenocycloprop[f]isoindol-2(1H)-yl]-4-(trifluoromethyl)-benzamide.

Physico-Chemical Properties

Appearance: ST-246 is a white to off-white powder.

Melting Point: Approximately 196° C. by DSC.

Permeability: The calculated log P is 2.94. Based on the partition coefficient, ST-246 is expected to have good permeability.

Particle Size: The drug substance is micronized to improve its dissolution in the gastrointestinal fluids. The typical particle size of the micronized material is 50% less than 5 microns.

Solubility: The solubility of ST-246 is low in water (0.026 mg/mL) and buffers of the gastric pH range. Surfactant increases its solubility slightly. ST-246 is very soluble in organic solvents. The solubility data are given in Table 5.

CLICK ON IMAGE

PATENT

http://www.google.com/patents/CN101445478A?cl=en

Tecovirimat (ST-246) is an antiviral with activity against orthopoxviruses such as smallpox and is currently undergoing clinical trials. It was previously owned by Viropharma and discovered in collaboration with scientists at USAMRIID. It is currently owned and is synthesized by Siga Technologies, a drug development company in the biodefense arena. It works by blocking cellular transmission of the virus, thus preventing the disease. Tecovirimat has been effective in laboratory testing, with no serious side effects reported to date. Despite not yet having FDA approval for medical use, tecovirimat is stockpiled in the US Strategic National Stockpile as a defense against a smallpox outbreak.[1]

Clinical study

The results of clinical trials involving tecovirimat supports its use against smallpox and other related orthopoxviruses. It has shown potential for a variety of uses including prophylaxis, as a post-exposure therapeutic, as a therapeutic and an adjunct to vaccination.[2]

Tecovirimat can be taken orally and has recently been granted permission to conduct Phase II trials by the U.S. Food and Drug Administration (FDA). In phase I trials tecovirimat was generally well tolerated with no serious adverse events.[3] Due to its importance for biodefense, the FDA has designated tecovirimat for ‘fast-track’ status, creating a path for expedited FDA review and eventual regulatory approval.

Tecovirimat is an orthopoxvirus egress inhibitor. Tecovirimat appears to target the V061 gene in cowpox, which is homologous to the vaccinia virus F13L. By targeting this gene, tecovirimat inhibits the function of a major envelope protein required for the production of extracellar virus. Thus the virus is prevented from leaving the cell, and the spread of the virus within the body is prevented.[4]

 

References

  1. Damon, Inger K.; Damaso, Clarissa R.; McFadden, Grant (2014). “Are We There Yet? The Smallpox Research Agenda Using Variola Virus”. PLoS Pathogens 10 (5): e1004108.doi:10.1371/journal.ppat.1004108PMID 24789223.
  2. Siga Technologies
  3. Jordan, R; Tien, D; Bolken, T. C.; Jones, K. F.; Tyavanagimatt, S. R.; Strasser, J; Frimm, A; Corrado, M. L.; Strome, P. G.; Hruby, D. E. (2008). “Single-Dose Safety and Pharmacokinetics of ST-246, a Novel Orthopoxvirus Egress Inhibitor”Antimicrobial Agents and Chemotherapy 52 (5): 1721–1727. doi:10.1128/AAC.01303-07PMC 2346641PMID 18316519.
  4. Yang, G; Pevear, D. C.; Davies, M. H.; Collett, M. S.; Bailey, T; Rippen, S; Barone, L; Burns, C; Rhodes, G; Tohan, S; Huggins, J. W.; Baker, R. O.; Buller, R. L.; Touchette, E; Waller, K; Schriewer, J; Neyts, J; Declercq, E; Jones, K; Hruby, D; Jordan, R (2005). “An Orally Bioavailable Antipoxvirus Compound (ST-246) Inhibits Extracellular Virus Formation and Protects Mice from Lethal Orthopoxvirus Challenge”Journal of Virology 79 (20): 13139–13149. doi:10.1128/JVI.79.20.13139-13149.2005PMC 1235851PMID 16189015.

Referenced by
Citing Patent Filing date Publication date Applicant Title
CN101912389A * Aug 9, 2010 Dec 15, 2010 中国人民解放军军事医学科学院微生物流行病研究所 Pharmaceutical composition containing ST-246 and preparation method and application thereof
CN102406617A * Nov 30, 2011 Apr 11, 2012 中国人民解放军军事医学科学院生物工程研究所 Tecovirimat dry suspension and preparation method thereof
CN102406617B Nov 30, 2011 Aug 28, 2013 中国人民解放军军事医学科学院生物工程研究所 Tecovirimat dry suspension and preparation method thereof
CN103068232B * Mar 23, 2011 Aug 26, 2015 西佳科技股份有限公司 多晶型物形式st-246和制备方法
US8530509 Jul 29, 2011 Sep 10, 2013 Siga Technologies, Inc. Compounds, compositions and methods for treatment and prevention of orthopoxvirus infections and associated diseases
US8802714 Aug 14, 2013 Aug 12, 2014 Siga Technologies, Inc. Compounds, compositions and methods for treatment and prevention of orthopoxvirus infections and associated diseases
US9045418 Jul 3, 2014 Jun 2, 2015 Siga Technologies, Inc. Compounds, compositions and methods for treatment and prevention of Orthopoxvirus infections and associated diseases

Patent Citations
Cited Patent Filing date Publication date Applicant Title
US20070287735 * Apr 23, 2007 Dec 13, 2007 Siga Technologies, Inc. Chemicals, compositions, and methods for treatment and prevention of orthopoxvirus infections and associated diseases
US20090011037 * Apr 23, 2008 Jan 8, 2009 Cydex Pharmaceuticals, Inc. Sulfoalkyl Ether Cyclodextrin Compositions and Methods of Preparation Thereof
US8530509 Jul 29, 2011 Sep 10, 2013 Siga Technologies, Inc. Compounds, compositions and methods for treatment and prevention of orthopoxvirus infections and associated diseases
US8802714 Aug 14, 2013 Aug 12, 2014 Siga Technologies, Inc. Compounds, compositions and methods for treatment and prevention of orthopoxvirus infections and associated diseases
US9045418 Jul 3, 2014 Jun 2, 2015 Siga Technologies, Inc. Compounds, compositions and methods for treatment and prevention of Orthopoxvirus infections and associated diseases
Classifications
Tecovirimat
Tecovirimat.svg
Systematic (IUPAC) name

N-{3,5-Dioxo-4- azatetracyclo[5.3.2.0{2,6}.0{8,10}]dodec-11-en-4- yl}-4-(trifluoromethyl)benzamide

Identifiers
UNII F925RR824R Yes
ChEMBL CHEMBL1242629 Yes
Synonyms ST-246
Chemical data
Formula C19H15F3N2O3
Molecular mass base: 376.3 g/mol

//////////////////Tecovirimat, FDA 2018, ORPHAN DRUG DESIGNATION,  TPOXX, SIGA Technologies Inc,  Fast TrackPriority Review

FC(F)(F)c1ccc(cc1)C(=O)NN1C(=O)C2C(C3C=CC2C2CC32)C1=O

National award to Anthony Melvin Crasto for contribution to Pharma society from Times Network for Excellence in HEALTHCARE) | 5th July, 2018 | Taj Lands End, Mumbai, India

$
0
0

times now 1

DR ANTHONY MEVIN CRASTO Conferred prestigious individual national award at function for contribution to Pharma society from Times Network, National Awards for Marketing Excellence ( For Excellence in HEALTHCARE) | 5th July, 2018 | Taj Lands End, Mumbai India

times now 5

TIMES NOW 2 TIMES NOW 3

times 4

 

 

 

 

 

 

////////////National award,  contribution to Pharma society, Times Network, Excellence in HEALTHCARE,  5th July, 2018, Taj Lands End, Mumbai,  India, ANTHONY CRASTO

#hotpersoninawheelchair
#worlddrugtracker


Mercaptamine bitartrate, システアミン , меркаптамин , 巯乙胺

$
0
0

Cysteamine bitartrate.pngImage result for mercaptamine bitartrate

Image result for mercaptamine bitartrate

Mercaptamine bitartrate

2-aminoethanethiol;2,3-dihydroxybutanedioic acid

Molecular Formula: C6H13NO6S
Molecular Weight: 227.231 g/mol

Cystagon; Cysteamine – Mylan/Orphan Europe; Cysteamine bitartrate

Procysbi; CYSTEAMINE BITARTRATE; 27761-19-9; CHEBI:50386; (+/-)-Tartaric Acid

INGREDIENT UNII CAS
Cysteamine Bitartrate QO84GZ3TST 27761-19-9
Cysteamine Hydrochloride IF1B771SVB 156-57-0

Cysteamine bitartrate is a mercaptoethylamine compound that is endogenously derived from the COENZYME A degradative pathway. The fact that cysteamine is readily transported into LYSOSOMES where it reacts with CYSTINE to form cysteine-cysteamine disulfide and CYSTEINE has led to its use in CYSTINE DEPLETING AGENTS for the treatment of CYSTINOSIS.

Cysteamine Bitartrate is an aminothiol salt used in the treatment of nephropathic cystinosis. Cysteamine bitartrate enters the cell and reacts with cystine producing cysteineand cysteinecysteamine mixed disulfide compound, both of which, unlike cystine, can pass through the lysosomal membrane. This prevents the accumulation of cystinecrystals in the lysosomes of patients with cystinosis, which can cause considerable damage and eventual destruction of the cells, particularly in the kidneys. (NCI05)

Cysteamine is a simple aminothiol molecule that is used to treat nephropathic cystinosis, due to its ability to decrease the markedly elevated and toxic levels of intracellular cystine that occur in this disease and cause its major complications. Cysteamine has been associated with serum enzyme elevations when given intravenously in high doses, but it has not been shown to cause clinically apparent acute liver injury.

Given intravenously or orally to treat radiation sickness. The bitartrate salts (Cystagon® and Procysbi) have been used for the oral treatment of nephropathic cystinosis and cystinurea. The hydrochloride salt (Cystaran™) is indicated for the treatment of corneal cystine crystal accumulation in cystinosis patients.

  • OriginatorMylan
  • DeveloperAlphapharm; Mylan
  • ClassMercaptoethylamines; Small molecules; Sulfhydryl compounds
  • Mechanism of ActionGlutathione synthase stimulants

Highest Development Phases

  • MarketedNephropathic cystinosis
  • DiscontinuedUnspecified

Most Recent Events

  • 09 Apr 2018Mercaptamine bitartrate licensed to Recordati worldwide
  • 26 Oct 2017Chemical structure information added
  • 31 Dec 2008Mercaptamine bitartrate oral is still in phase II/III trials for Undefined indication in European Union

DESCRIPTION: CYSTAGON® (cysteamine bitartrate) Capsules for oral administration, contain cysteamine bitartrate, a cystine depleting agent which lowers the cystine content of cells in patients with cystinosis, an inherited defect of lysosomal transport. CYSTAGON® is the bitartrate salt of cysteamine, an aminothiol, beta-mercaptoethylamine. Cysteamine bitartrate is a highly water soluble white powder with a molecular weight of 227 and the molecular formula C2H7NS · C4H6O6. It has the following chemical structure:

str1

Cysteamine is a medication intended for a number of indications, and approved by the FDA to treat cystinosis.

It is stable aminothiol, i.e., an organic compound containing both an amine and a thiol functional groups. Cysteamine is a white, water-soluble solid. It is often used as salts of the ammonium derivative [HSCH2CH2NH3]+[1] including the hydrochloride, phosphocysteamine, and bitartrate.[2]

Cysteamine molecule is biosynthesized in mammals, including humans, by the degradation of coenzyme A. The intermedia pantetheineis broken down into cysteamine and pantothenic acid.[2] It is the biosynthetic precursor to the neurotransmitter hypotaurine.[3][4]

Medical uses

Cysteamine is used to treat cystinosis. It is available by mouth (capsule and extended release capsule) and in eye drops.[5][6][7][8][9]

Adverse effects

Topical use

The most important adverse effect related to topical use might be skin irritation.

Oral use

The label for oral formulations of cysteamine carry warnings about symptoms similar to Ehlers-Danlos syndrome, severe skin rashes, ulcers or bleeding in the stomach and intestines, central nervous symptoms including seizures, lethargy, somnolence, depression, and encephalopathy, low white blood cell levelselevated alkaline phosphatase, and idiopathic intracranial hypertension that can cause headache, tinnitus, dizziness, nausea, double or blurry vision, loss of vision, and pain behind the eye or pain with eye movement.[6]

The main side effects are Ehlers-Danlos syndrome, severe skin rashes, ulcers or bleeding in the stomach and intestines, central nervous symptoms, low white blood cell levelselevated alkaline phosphatase, and idiopathic intracranial hypertension (IIH). IIH can cause headache, ringing in the ears, dizziness, nausea, blurry vision, loss of vision, and pain behind the eye or with eye movement.

Additional adverse effects of oral cysteamine include bad breath, skin odor, vomiting, nausea, stomach pain, diarrhea, and loss of appetite.[6]

The drug is in pregnancy category C; the risks of cysteamine to a fetus are not known but it harms babies in animal models at doses less than those given to people.[7][8]

For eye drops, the most common adverse effects are sensitivity to light, redness, and eye pain, headache, and visual field defects.[8]

Interactions

There are no drug interactions for normal capsules or eye drops,[7][8] but the extended release capsules should not be taken with drugs that affect stomach acid like proton pump inhibitors or with alcohol, as they can cause the drug to be released too quickly.[6] It doesn’t inhibit any cytochrome P450 enzymes.[6]

Pharmacology

People with cystinosis lack a functioning transporter (cystinosin) which transports cystine from the lysosome to the cytosol. This ultimately leads to buildup of cystine in lysosomes, where it crystallizes and damages cells.[5] Cysteamine enters lysosomes and converts cystine into cysteine and cysteine-cysteamine mixed disulfide, both of which can exit the lysosome.[6]

Biological function

Cysteamine also promotes the transport of L-cysteine into cells, that can be further used to synthesize glutathione, which is one of the most potent intracellular antioxidants.[4]

Cysteamine is used as a drug for the treatment of cystinosis; it removes cystine that builds up in cells of people with the disease.[10]

History

First evidence regarding the therapeutic effect of cysteamine on cystinosis dates back to 1950s. Cysteamine was first approved as a drug for cystinosis in the US in 1994.[6] An extended release form was approved in 2013.[11]

Society and culture

It is approved by FDA and EMA.[5][6]

In 2013, the regular capsule of cysteamine cost about $8,000 per year; the extended release form that was introduced that year was priced at $250,000 per year.[11]

Research

It was studied in in vitro and animal models for radiation protection in the 1950s, and in similar models from the 1970s onwards for sickle cell anemia, effects on growth, its ability to modulate the immune system, and as a possible inhibitor of HIV.[2]

In the 1970s it was tested in clinical trials for Paracetamol toxicity which it failed, and in clinical trials for systemic lupus erythematosus in the 1990s and early 2000s, which it also failed.[2]

Clinical trials in Huntington’s disease were begun in the 1990s and were ongoing as of 2015.[2][12]

As of 2013 it was in clinical trials for Parkinson’s diseasemalaria, radiation sickness, neurodegenerative disorders, neuropsychiatric disorders, and cancer treatment.[10][2]

It has been studied in clinical trials for pediatric nonalcoholic fatty liver disease[13]

Horizon Pharma , following the acquisition of Raptor Pharmaceuticals (previously through its Bennu Pharmaceuticals subsidiary, and following its acquisition of Encode Pharmaceuticals , which licensed the drug from the University of California )) has developed and launched DR Cysteamine (EC Cysteamine; Procysbi), a methyl-CpG binding protein 2 (MECP2) gene modulating, oral delayed-release (DR), enteric-coated (EC), bitartrate salt formulation of mercaptamine (cysteamine).

PRODUCT PATENT, WO2007089670 ,

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2007089670

hold SPC protection in most of the EU states until September 2028, and expire in the US in July 2037. In July 2018, the US FDA’s Orange Book was seen to list a patent covering product ( US8026284 and US9173851 ) of cysteamine bitartrate, that is due to expire in September 2027 and December 2034, respectively.

Cystinosis is a rare, autosomal recessive disease caused by intra-lysosomal accumulation of the amino acid cystine within various tissues, including the spleen, liver, lymph nodes, kidney, bone marrow, and eyes. Nephropathic cystinosis is associated with kidney failure that
necessitates kidney transplantation. To date, the only specific treatment for nephropathic cystinosis is the sulfhydryl agent, cysteamine. Cysteamine has been shown to lower intracellular cystine levels, thereby reducing the rate of progression of kidney failure in children.
[0004] Cysteamine, through a mechanism of increased gastrin and gastric acid production, is ulcerogenic. When administered orally to children with cystinosis, cysteamine has also been shown to cause a 3 -fold increase in gastric acid production and a 50% rise of serum gastrin levels. As a consequence, subjects that use cysteamine suffer
gastrointestinal (GI) symptoms and are often unable to take cysteamine regularly or at full dose .

[0005] To achieve sustained reduction of leukocyte cystine levels, patients are normally required to take oral cysteamine every 6 hours, which invariably means having to awaken from sleep. However, when a single dose of
cysteamine was administered intravenously the leukocyte cystine level remained suppressed for more than 24 hours, possibly because plasma cysteamine concentrations were higher and achieved more rapidly than when the drug is administered orally. Regular intravenous administration of cysteamine would not be practical. Accordingly, there is a need for formulations and delivery methods that would result in higher plasma, and thus intracellular, concentration as well as decrease the number of daily doses and therefore improve the quality of life for patients.

PATENT

US-20180193292

Process for the preparation of cysteamine bitartrate . Represents the first patenting to be seen from Lupin Limited on cysteamine bitartrate.

Cysteamine bitartrate (I) is a cystine depleting agent which lower the cystine content of cells in patients with cystinosis, an inherited defect of lysosomal transport, it is indicated for the management of nephropathic cystinosis in children and adults. Cysteamine bitartrate (I) is simplest stable aminothiol salt and has the following structural formula:

 The application WO 2014204881 provides pharmaceutical composition of cysteamine bitrate and another application WO 2007089670 provides method of administrating cysteamine and pharmaceutically salts and method of treatment thereof.

Examples

1. Preparation of Cysteamine Bitartrate.

 A mixture of ethanol (1000 ml), butylated hydroxy anisole (1 g) and cysteamine hydrochloride (100 g) was stirred and cooled to 5 to 10° C. To this mixture a solution of ethanol (500 ml) and sodium hydroxide (352 g) was added over a period of 30 minutes.
The mixture was stirred at a temperature of 10 to 15° C. for 45 minutes. The mixture was filtered through celite. The filtrate was added to a mixture of ethanol (1250 ml), butylated hydroxy anisole (1 g) and L-(+)-tartaric acid (132 g) at a temperature of 55-60° C. The reaction mixture was stirred at 70-75° C. for 45 minutes. The mixture was cooled to 20-30° C. The solid was filtered, washed with ethanol and dried under vacuum.

2. Purification of Cysteamine Bitartrate.

A mixture of cysteamine bitartrate (100 g) and ethanol (5000 ml) was heated to a temperature of 77-82° C. The solution was filtered and the filtrate was cooled to 20 to 30° C. and stirred for 40 minutes. The solid was filtered, washed with ethanol and dried under vacuum. Yield: 80 g; HPLC purity: 99.90%.

3. Preparation of Crystalline Form L1 of Cysteamine Bitartrate.

A mixture of cysteamine bitartrate (50 g) and methanol (600 ml) was heated to a temperature of 35-45° C. The solution was filtered and the filtrate was cooled to 5 to 10° C. Cysteamine bitartrate (0.25 g) seed material was added to the filtrate. The slurry was cooled to −5 to −25° C. and stirred for 40 minutes. The solid was filtered, washed with precooled methanol and dried under vacuum. Yield: 40 g. Cysteamine bitartrate with X-ray powder diffraction pattern as depicted in FIG. 1 was obtained.

4. Preparation of Crystalline Form L2 of Cysteamine Bitartrate.

A mixture of cysteamine bitartrate (50 g), butylated hydroxy anisole (1.3 g) and methanol (600 ml) was heated to a temperature of 35-45° C. The solution was filtered and the filtrate was cooled to 5 to 10° C. Cysteamine bitartrate (0.25 g) seed material was added to the filtrate. The slurry was cooled to −25 to −30° C. and stirred for 40 minutes. The solid was filtered, washed with precooled methanol and the solid was dried under 800-900 mm/Hg of vacuum at 35-40° C. for 5 hours. Yield: 40 g. Cysteamine bitartrate with X-ray powder diffraction pattern as depicted in FIG. 2 was obtained.

PATENT

WO 2014204881

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014204881

PATENTS
EP3308773A1 *2016-10-112018-04-18Recordati Industria Chimica E Farmaceutica SPAFormulations of cysteamine and cysteamine derivatives
Family To Family Citations
JP2016523364A *2013-06-172016-08-08ラプター ファーマシューティカルズ インコーポレイテッドシステアミン組成物の分析方法
WO2017087532A1 *2015-11-162017-05-26The Regents Of The University Of CaliforniaMethods of treating non-alcoholic steatohepatitis (nash) using cysteamine compounds
WO2017157922A12016-03-182017-09-21Recordati Industria Chimica E Farmaceutica S.P.A.Prolonged release pharmaceutical composition comprising cysteamine or salt thereof, 
KR20167000255A2014-06-17서방성 시스테아민 비드 투약 형태
JP2016521489A2014-06-17
CN 2014800346472014-06-17延迟释放型半胱胺珠粒调配物,以及其制备及使用方法
EP201408131322014-06-17Delayed release cysteamine bead formulation
CA 29147702014-06-17Delayed release cysteamine bead formulation, and methods of making and using same

References

  1. Jump up^ Reid, E. Emmet (1958). Organic Chemistry of Bivalent Sulfur1. New York: Chemical Publishing Company, Inc. pp. 398–399.
  2. Jump up to:a b c d e f Besouw, M; Masereeuw, R; van den Heuvel, L; Levtchenko, E (August 2013). “Cysteamine: an old drug with new potential”. Drug Discovery Today18 (15–16): 785–92. doi:10.1016/j.drudis.2013.02.003PMID 23416144.
  3. Jump up^ Singer, Thomas P (1975). “Oxidative Metabolism of Cysteine and Cystine”. In Greenberg, David M. Metabolic pathways Vol. 7. Metabolism of sulfur compounds (3rd ed.). New York: Academic Press. p. 545. ISBN 9780323162081.
  4. Jump up to:a b Besouw, Martine; Masereeuw, Rosalinde; van den Heuvel, Lambert; Levtchenko, Elena (August 2013). “Cysteamine: an old drug with new potential”. Drug Discovery Today18(15–16): 785–792. doi:10.1016/j.drudis.2013.02.003ISSN 1878-5832PMID 23416144.
  5. Jump up to:a b c Nesterova, Galina; Gahl, William A. (October 6, 2016). “Cystinosis”GeneReviews. University of Washington, Seattle.
  6. Jump up to:a b c d e f g h “US Label: Cysteamine bitartrate delayed-release capsules” (PDF). FDA. August 2015.
  7. Jump up to:a b c “US Label: Cysteamine bitartrate capsules” (PDF). FDA. June 2007.
  8. Jump up to:a b c d “US Label: Cysteamine ophthalmic solution” (PDF). FDA. October 2012.
  9. Jump up^ Shams, F; Livingstone, I; Oladiwura, D; Ramaesh, K (10 October 2014). “Treatment of corneal cystine crystal accumulation in patients with cystinosis”Clinical ophthalmology (Auckland, N.Z.)8: 2077–84. doi:10.2147/OPTH.S36626PMC 4199850Freely accessiblePMID 25336909.
  10. Jump up to:a b Besouw, Martine; Masereeuw, Rosalinde; van den Heuvel, Lambert; Levtchenko, Elena (August 2013). “Cysteamine: an old drug with new potential”Drug Discovery Today18(15–16): 785–792. doi:10.1016/j.drudis.2013.02.003ISSN 1878-5832PMID 23416144.
  11. Jump up to:a b Pollack, Andrew (30 April 2013). “F.D.A. Approves Raptor Drug for Form of Cystinosis”The New York Times.
  12. Jump up^ Shannon, KM; Fraint, A (15 September 2015). “Therapeutic advances in Huntington’s Disease”. Movement disorders : official journal of the Movement Disorder Society30 (11): 1539–46. doi:10.1002/mds.26331PMID 26226924.
  13. Jump up^ Mitchel, EB; Lavine, JE (November 2014). “Review article: the management of paediatric nonalcoholic fatty liver disease”Alimentary pharmacology & therapeutics40 (10): 1155–70. doi:10.1111/apt.12972PMID 25267322.
ysteamine
Cysteamine-2D-skeletal.png
Cysteamine 3D ball.png
Skeletal formula (top)
Ball-and-stick model of the cysteamine
Clinical data
Synonyms 2-Aminoethanethiol
β-Mercaptoethylamine
2-Mercaptoethylamine
Decarboxycysteine
Thioethanolamine
Mercaptamine
License data
Identifiers
CAS Number
PubChemCID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
ECHA InfoCard 100.000.421 Edit this at Wikidata
Chemical and physical data
Formula C2H7NS
Molar mass 77.15 g·mol−1
Melting point 95 to 97 °C (203 to 207 °F)
Title: Cysteamine
CAS Registry Number: 60-23-1
CAS Name: 2-Aminoethanethiol
Additional Names: mercaptamine; b-mercaptoethylamine; 2-aminoethyl mercaptan; thioethanolamine; decarboxycysteine; MEA; mercamine
Manufacturers’ Codes: L-1573
Trademarks: Becaptan (Labaz); Lambratene (formerly) (Cilag Italiano)
Molecular Formula: C2H7NS
Molecular Weight: 77.15
Percent Composition: C 31.14%, H 9.15%, N 18.16%, S 41.56%
Line Formula: HSCH2CH2NH2
Literature References: A sulfhydryl compound with a variety of biological effects. Prepn: Gabriel, Leupold, Ber. 31, 2837 (1898); Knorr, Rössler, ibid. 36, 1281 (1903); Mills, Jr., Bogart, J. Am. Chem. Soc. 62, 1173 (1940); Wenker, ibid. 57, 2328 (1935); D. A. Shirley, Preparation of Organic Intermediates (Wiley, New York, 1951) p 189. Use in treatment of paracetamol (acetaminophen) poisoning: L. F. Prescott et al., Lancet 2, 109 (1976); A. L. Harris, Br. Med. J. 284, 825 (1982). Effects in nephropathic cystinosis: M. Yudkoff et al., N. Engl. J. Med. 304, 141 (1981). Radioprotective effects: R. P. Bird, Radiat. Res. 72, 290 (1980); C. J. Koch, R. L. Howell, ibid. 87, 265 (1981). Cysteamine has been shown to be a duodenal ulcerogen in rats: H. Selye, S. Szabo, Nature 244,458 (1973); S. Szabo, Am. J. Pathol. 93, 273 (1978); P. Kirkegaard et al., Scand. J. Gastroenterol. 15, 621 (1980). Review: S. Szabo, Lab. Invest. 51, 121 (1984). It has also been found to deplete somatostatin concentration: S. Szabo, S. Reichlein, Endocrinology 109, 2255 (1981); S. M. Sagar et al., J. Neurosci. 2, 225 (1982). In pituitary tissue, cysteamine is a potent depletor of prolactin concentrations in vivo and in vitro: W. J. Millard et al., Science 217, 452 (1982). Toxicity studies: E. Beccari et al.,Arzneim.-Forsch. 5, 421 (1955); D. L. Klayman et al., J. Med. Chem. 12, 510 (1969); P. K. Srivastava, L. Field, ibid. 18, 798 (1975).
Properties: Crystals by sublimation in vacuo. Disagreeable odor. mp 97-98.5°. Oxidizes to cystamine on standing in air. Freely sol in water, alkaline reaction. LD50 in mice (mg/kg): 625 orally; 250 i.p. (Klayman); (Srivastava, Field).
Melting point: mp 97-98.5°
Toxicity data: LD50 in mice (mg/kg): 625 orally; 250 i.p. (Klayman); (Srivastava, Field)
Derivative Type: Hydrochloride
Molecular Formula: C2H7NS.HCl
Molecular Weight: 113.61
Percent Composition: C 21.14%, H 7.10%, N 12.33%, S 28.22%, Cl 31.21%
Properties: Crystals from alc, mp 70.2-70.7°. Sol in water, alcohol. LD50 (cg/kg): 23.19 i.p. in rats; 14.95 i.v. in rabbits (Beccari).
Melting point: mp 70.2-70.7°
Toxicity data: LD50 (cg/kg): 23.19 i.p. in rats; 14.95 i.v. in rabbits (Beccari)
Use: Experimentally as a radioprotective agent and to produce acute and chronic duodenal ulcers in rats.
Therap-Cat: Antidote to acetaminophen.
Keywords: Antidote (Acetaminophen Poisoning)

///////////Mercaptamine bitartrate, Cystagon, Cysteamine,  Cysteamine bitartrate, Mercaptamine,, システアミン , меркаптамин ,  巯乙胺

C(CS)N.C(C(C(=O)O)O)(C(=O)O)O

FDA approves first cancer drug Kisqali (ribociclib) through new oncology review pilot that enables greater development efficiency FDA expands the use of breast cancer drug

$
0
0

FDA approves first cancer drug through new oncology review pilot that enables greater development efficiency FDA expands the use of breast cancer drug

The U.S. Food and Drug Administration today approved Kisqali (ribociclib) in combination with an aromatase inhibitor for the treatment of pre/perimenopausal or postmenopausal women with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic breast cancer, as initial endocrine-based therapy. The FDA also approved Kisqali in combination with fulvestrant for the treatment of postmenopausal women with HR-positive, HER2-negative advanced or metastatic breast cancer, as initial endocrine based therapy or following disease progression on endocrine therapy.

July 18, 2018

Release

The U.S. Food and Drug Administration today approved Kisqali (ribociclib) in combination with an aromatase inhibitor for the treatment of pre/perimenopausal or postmenopausal women with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic breast cancer, as initial endocrine-based therapy. The FDA also approved Kisqali in combination with fulvestrant for the treatment of postmenopausal women with HR-positive, HER2-negative advanced or metastatic breast cancer, as initial endocrine based therapy or following disease progression on endocrine therapy.

This is the first approval that FDA has granted as a part of two new pilot programs announced earlier this year that collectively aim to make the development and review of cancer drugs more efficient, while improving FDA’s rigorous standard for evaluating efficacy and safety. With this real-time review, the FDA was able to start evaluating the clinical data as soon as the trial results become available, enabling FDA to be ready to approve the new indication upon filing of a formal application with the Agency.

The first new program, called Real-Time Oncology Review, allows for the FDA to review much of the data earlier, after the clinical trial results become available and the database is locked, before the information is formally submitted to the FDA. This allows the FDA to begin its analysis of the data earlier, and provide feedback to the sponsor on how they can most effectively analyze the data to answer key regulatory questions. The pilot focuses on early submission of data that are the most relevant to assessing safety and effectiveness of the product. Then, when the sponsor submits the application with the FDA, the review team will already be familiar with the data and in a better position to conduct a more efficient, timely, and thorough review.

The second program is a new templated Assessment Aid that the applicant uses to organize its submission into a structured format to facilitate FDA’s review of the application. By using a structured template, the FDA is able to layer its assessment into the same file submitted by the sponsor, allowing this annotated application to serve as the document that contains the FDA review. This voluntary submission form provides for a more streamlined approach to reviewing data and illustrating FDA’s analysis. It allows for drug reviewers to focus on the key benefit-risk and labeling issues rather than administrative issues.

“With this approval, we’ve demonstrated some of the benefits of the new programs that we’re piloting for our review of cancer drugs, to improve regulatory efficiency while enhancing the process for evaluating the data submitted to us. This shows that, with smart policy approaches, we can gain efficiency while also improving the rigor of our process. These new programs were designed to reduce some of the administrative issues that can add to the time and cost of the review process, including the staffing burdens on the FDA. For example, by analyzing data earlier in the process, before formal submission to the FDA, and evaluating submissions in a structured template, we can make it easier to identify earlier when applications are missing key analysis or information that can delay reviews,” said FDA Commissioner Scott Gottlieb, M.D. “With today’s approval, the FDA used these new approaches to allow the review team to start analyzing data before the actual submission of the application and help guide the sponsor’s analysis of the top-line data to tease out the most relevant information. This enabled our approval less than one month after the June 28 submission date and several months ahead of the goal date.”

These new processes are good for patients, good for health care providers, good for product developers, and good for the FDA, by allowing our staff to have more time to engage with product developers and focus on the key aspects of drug reviews. We can improve efficiency and solidify our gold standard for review.”

Currently the two pilot programs are being used for supplemental applications for already-approved cancer drugs and could later be expanded to original drugs and biologics.

Kisqali was first approved in March 2017 for use with an AI to treat HR-positive, HER2-negative breast cancer in post-menopausal women whose cancer is advanced or has spread to other parts of the body.

“The approval adds a new treatment choice for patients with breast cancer,” said Richard Pazdur, M.D., director of the FDA’s Oncology Center of Excellence and acting director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research. “We are committed to continuing to bring more treatment options to patients.”

Breast cancer is the most common form of cancer in the United States. The National Cancer Institute at the National Institutes of Health estimates approximately 266,120 women will be diagnosed with breast cancer this year and 40,920 will die of the disease. Approximately 72 percent of patients with breast cancer have tumors that are HR-positive and HER2-negative.

The efficacy of Kisqali in combination with an AI for pre/perimenopausal women was demonstrated in a clinical trial of 495 participants who received either Kisqali and an AI or placebo and an AI. All pre- or peri-menopausal patients on this study received ovarian suppression with goserelin. The trial measured progression-free survival (PFS), which is generally the amount of time after the start of this treatment during which the cancer does not substantially grow and the patient is alive. PFS was longer for patients taking Kisqali plus an AI (median PFS of 27.5 months) compared to patients who received placebo plus an AI (median PFS of 13.8 months).

The efficacy of Kisqali in combination with fulvestrant in treating advanced or metastatic breast cancer was demonstrated in a clinical trial that included 726 participants who received either Kisqali and fulvestrant or placebo and fulvestrant. The trial measured PFS, which was longer for patients taking Kisqali plus fulvestrant (median PFS of 20.5 months) compared to patients who received placebo plus fulvestrant (median PFS of 12.8 months).

The common side effects of Kisqali are infections, abnormally low count of a type of white blood cell (neutropenia), a reduction in the number of white cells in the blood (leukopenia), headache, cough, nausea, fatigue, diarrhea, vomiting, constipation, hair loss and rash.

Warnings include the risk of a heart problem known as QT prolongation that can cause an abnormal heartbeat and may lead to death, serious liver problems, low white blood cell counts that may result in infections that may be severe, and fetal harm.

The FDA granted Priority Review and Breakthrough Therapy designation for this indication.

The FDA granted this approval to Novartis Pharmaceuticals Corporation.

BMS-978587

$
0
0

str1

str1

Ido-IN-4.pngFigure imgf000059_0001

BMS-978587

Molecular Formula: C26H35N3O3 CAS 1629125-65-0
Molecular Weight: 437.582

US9675571   PATENT

Inventor James Aaron Balog Audris Huang Bin Chen Libing Chen Steven P. Seitz Amy C. Hart Jay A. Markwalder

AssigneeBristol-Myers Squibb Co Priority date 2013-03-15

IDO-IN-4; 1629125-65-0; SCHEMBL17456163; AKOS030526622; ZINC521836543; CS-5086

(1R,2S)-2-[4-(Di-isobutylamino)-3-(3-(p-tolyl)ureido)phenyl] Cyclopropanecarboxylic Acid

(1R,2S)-2-[4-[bis(2-methylpropyl)amino]-3-[(4-methylphenyl)carbamoylamino]phenyl]cyclopropane-1-carboxylic acid

(lR,2S)-2-(4-(diisobutylamino)-3-(3-(p- tolyl)ureido)phenyl)cyclopropanecarboxylic acid

BMS-978587 was discovered and developed within Bristol-Myers Squibb as a potent small molecule IDO inhibitor

Tryptophan is an amino acid which is essential for cell proliferation and survival. Indoleamine-2,3-dioxygenase is a heme-containing intracellular enzyme that catalyzes the first and rate-determining step in the degradation of the essential amino acid L-tryptophan to N-formyl-kynurenine. N-formyl-kynurenine is then metabolized by mutliple steps to eventually produce nicotinamide adenine dinucleotide (NAD+). Tryptophan catabolites produced from N-formyl-kynurenine, such as kynurenine, are known to be preferentially cytotoxic to T-cells. Thus an overexpression of IDO can lead to increased tolerance in the tumor microenvironment. IDO overexpression has been shown to be an independent prognostic factor for decreased survival in patients with melanoma, pancreatic, colorectal and endometrial cancers among others. Moreover, IDO has been found to be implicated in neurologic and psychiatric disorders including mood idsorders as well as other chronic diseases characterized by IDO activation and tryptophan depletiion, such as viral infections, for example AIDS, Alzheimer’s disease, cancers including T-cell leukemia and colon cancer, autimmune diseases, diseases of the eye such as cataracts, bacterial infections such as Lyme disease, and streptococcal infections.

Accordingly, an agent which is safe and effective in inhibiting production of IDO would be a most welcomed addition to the physician’s armamentarium

PATENT

https://patents.google.com/patent/US9675571

Figure US09675571-20170613-C00026

Figure US09675571-20170613-C00027

Example 1 Method A Enantiomer 1 and Enantiomer 2 Enantiomer 1: (1R,2S)-2-(4-(diisobutylamino)-3-(3-(p-tolyl)ureido)phenyl)cyclopropanecarboxylic acid

Figure US09675571-20170613-C00039

PATENT

WO2014/150677

https://patents.google.com/patent/WO2014150677A1/en

Example 1- Method A

Enantiomer 1 and Enantiomer 2

Enantiomer 1 : (lR,2S)-2-(4-(diisobutylamino)-3-(3-(p- tolyl)ureido)phenyl)cyclopropanecarboxylic acid

Figure imgf000059_0001

Enantiomer 2: (lS,2R)-2-(4-(diisobutylamino)-3-(3-(p- tolyl)ureido)phenyl)cyclopropanecarboxylic acid

Figure imgf000060_0001

1A. 4-bromo-N,N-diisobutyl-2-nitroaniline

4-bromo-l-fluoro-2 -nitrobenzene (7 g, 31.8 mmol) and diisobutylamine (12.23 ml, 70.0 mmol) were heated at 130 °C for 3 h. It was then cooled to RT, purification via flash chromatography gave 1A (bright red solid, 8.19 g, 24.88 mmol, 78 % yield) LC-MS Anal. Calc’d for Ci4H2iBrN202 328.08, found [M+3] 331.03, Tr = 2.63 min (Method A).

IB. N,N-diisobutyl-2-nitro-4-vinylaniline

To a solution of 1 A (1 g, 3.04 mmol) in ethanol (15.00 mL) and toluene (5 mL) (sonication to break up the solid) was added 2,4,6-trivinyl- 1 ,3 ,5 ,2,4,6-trioxatriborinane pyridine complex (0.589 g, 3.64 mmol) followed by K3PO4 (1.289 g, 6.07 mmol) and water (2.000 mL). The reaction mixture was purged with Argon for 2 min and then Pd (PPh3)4(0.351 g, 0.304 mmol) was added. It was then heated at 80 °C in an oil bath for 8 h. LC-MS indicated completion. It was diluted with EtOAc (10 mL) and water (5 mL) and filtered through a pad of Celite, rinsed with EtOAc (2×30 mL). Aqueous layer was further extracted with EtOAc (2×30 mL), the combined extracts were washed with water, brine, dried over MgS04, filtered and concentrated. Purification via fiash chromatography gave IB (orange oil, 800 mg, 2.89 mmol, 95 % yield). LC-MS Anal. Calc’d for

Ci6H24N202 276.18, found [M+H] 277.34, Tr = 2.41 min (Method A). 1H NMR

(400MHz, CHLOROFORM-d) δ 7.73 (d, J=2.2 Hz, 1H), 7.44 (dd, J=8.8, 2.2 Hz, 1H), 7.08 (d, J=8.6 Hz, 1H), 6.60 (dd, J=17.5, 10.9 Hz, 1H), 5.63 (dd, J=17.6, 0.4 Hz, 1H), 5.20 (d, J=11.2 Hz, 1H), 3.00 – 2.89 (m, 4H), 1.99 – 1.85 (m, 2H), 0.84 (d, J=6.6 Hz, 12H) IC. Racemic (lR,2S)-ethyl 2-(4-(diisobutylamino)-3 nitrophenyl)

cyclopropanecarboxylate

To a solution of IB (800 mg, 2.61 mmol) in DCM (15 mL) was added rhodium(II) acetate dimer (230 mg, 0.521 mmol) followed by a slow addition of a solution of ethyl diazoacetate (0.811 mL, 7.82 mmol) in CH2CI2 (5.00 mL) over a period of 2 h via a syringe pump. The reaction mixture turned into a dark red solution and it was stirred at RT for extra 1 h. LC-MS indicated the appearance of two peaks with the desired molecular mass, the solvent was removed in vacuo and purification via flash

chromatography gave 1C (cis isomer) (yellow oil, 220 mg, 0.607 mmol, 23.30 % yield) and trans isomer (yellow oil, 300 mg, 0.828 mmol, 31.8 % yield). LC-MS Anal. Calc’d for C20H30N2O4 362.22, found [M+H] 363.27, Tr = 2.34 min (cis), 2.42 min (trans) (Method A), cis isomer: 1H NMR (400MHz, CHLOROFORM-d) δ 7.62 (d, J=1.8 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.02 (d, J=8.6 Hz, 1H), 3.95 – 3.86 (m, 2H), 2.89 (d, J=7.3 Hz, 4H), 2.53 – 2.44 (m, 1H), 2.07 (ddd, J=9.2, 7.9, 5.7 Hz, 1H), 1.87 (dquin, J=13.5, 6.8 Hz, 2H), 1.67 (dt, J=7.3, 5.5 Hz, 1H), 1.37 – 1.30 (m, 1H), 0.99 (t, J=7.0 Hz, 3H), 0.82 (d, J=6.6 Hz, 12H) trans isomer: 1H NMR (400MHz, CHLOROFORM-d) δ 7.43 (d, J=2.2 Hz, 1H), 7.17 – 7.11 (m, 1H), 7.08 – 7.03 (m, 1H), 4.18 (q, J=7.3 Hz, 2H), 2.89 (d, J=7.3 Hz, 4H), 2.46 (ddd, J=9.2, 6.4, 4.2 Hz, 1H), 1.94 – 1.80 (m, 3H), 1.62 – 1.54 (m, 1H), 1.34 – 1.23 (m, 4H), 0.83 (d, J=6.6 Hz, 12H)

ID. Racemic (lR,2S)-ethyl 2-(3-amino-4-(diisobutylamino)phenyl) cyclopropanecarboxylate

To a stirred solution of 1C (cis isomer) (220 mg, 0.607 mmol) in EtOAc (6 mL) was added palladium on carbon (64.6 mg, 0.061 mmol) and the suspension was hydrogenated (1 atm, balloon) at RT for 1 h. LC-MS indicated completion. The suspension was filtered through a pad of Celite and the filter cake was rinsed with EtOAc (2×30 mL). Combined filtrate and rinses were evaporated in vacuo. Purification via flash chromatography gave ID (light yellow oil, 140 mg, 0.421 mmol, 69.4 % yield). LC-MS Anal. Calc’d for C20H32N2O2 332.25, found [M+H] 333.34, Tr= 2.22 min (Method A). 1H NMR (400MHz, CHLOROFORM-d) δ 6.95 (d, J=8.1 Hz, 1H), 6.65 (d, J=2.0 Hz, 1H), 6.64 – 6.59 (m, 1H), 4.06 (s, 2H), 3.87 (qd, J=7.1, 0.9 Hz, 2H), 2.56 (d, J=7.0 Hz, 4H), 2.47 (q, J=8.6 Hz, IH), 2.01 (ddd, J=9.4, 7.8, 5.7 Hz, IH), 1.78 – 1.61 (m, 3H), 1.24 (ddd, J=8.6, 7.9, 5.1 Hz, IH), 0.92 (t, J=7.2 Hz, 3H), 0.89 (dd, J=6.6, 0.9 Hz, 12H)

Racemic example 1. Racemic (lR,2S)-2-(4-(diisobutylamino)-3-(3-(p- tolyl)ureido)phenyl)cyclopropanecarboxylic acid

To a solution of ID (140 mg, 0.421 mmol) in THF (4mL) was added 1- isocyanato-4-methylbenzene (0.079 mL, 0.632 mmol). The resulting solution was stirred at RT for 3 h. LC-MS indicated completion. The reaction mixture was concentrated and used without purification in the next step. The crude ester (180 mg, 0.387 mmol) was dissolved in THF (4 mL), NaOH (IN aqueous) (1.160 mL, 1.160 mmol) was added. Then MeOH (1 mL) was added to dissolve the precipitate and it turned into a clear yellow solution. After 60 h, reaction was complete by LC-MS. Most MeOH and THF was removed in vacuo and the crude was diluted with 2 mL of water, the pH was adjusted to ca. 2 using IN aqueous HC1. The aqueous phase was then extracted with EtOAc (3×10 mL) and the combined organic phase was washed with brine, dried over Na2S04 and concentrated. Purification via flash chromatography gave racemic example 1 (yellow foam, 110 mg, 0.251 mmol, 65.0 % yield), LC-MS Anal. Calc’d for CzeHssNsOs 437.27, found [M+H] 438.29, Tr = 4.22 min (Method A). 1H NMR (400MHz, CHLOROFORM- d) δ 10.15 (br. s., IH), 7.42 – 7.35 (m, 3H), 7.22 – 7.14 (m, 2H), 7.10 (d, J=8.1 Hz, 2H), 3.22 (d, J=6.6 Hz, 4H), 2.54 (q, J=8.6 Hz, IH), 2.31 (s, 3H), 2.16 – 1.98 (m, 3H), 1.61 (dt, J=7.3, 5.6 Hz, IH), 1.40 (td, J=8.3, 5.3 Hz, IH), 1.01 (br. s., 12H)

Example 1, Enantiomer 1 and Enantiomer 2. Chiral separation of racemic example 1 (Method H) gave enantiomer 1 Tr = 9.042 min (Method J). [a]24 D = -11.11 (c 7.02 mg/mL, MeOH) and enantiomer 2 Tr = 10.400 min (Method J). [a]24 D = + 11.17 (c 7.02 mg/mL, MeOH) as single enantiomers. Absolute stereochemistry was confirmed in example 1 method B.

Enantiomer 1 : LC-MS Anal. Calc’d for C26H35N3O3 437.27, found [M+H] 438.25, Tr= 4.19 min (Method A). 1H NMR (400MHz, CHLOROFORM-d) δ 8.12 (d, J=1.3 Hz, IH), 7.97 (s, IH), 7.20 (d, J=8.4 Hz, 2H), 7.14 – 7.07 (m, 2H), 7.02 (t, J=7.7 Hz, 2H),

6.89 (dd, J=8.1, 1.5 Hz, IH), 2.60 (q, J=8.6 Hz, IH), 2.50 (d, J=7.0 Hz, 4H), 2.32 (s, 3H), 2.13 – 2.04 (m, 1H), 1.71 – 1.55 (m, 3H), 1.35 (td, J=8.3, 5.1 Hz, 1H), 0.76 (dd, J=6.6, 2.2 Hz, 12H)

Enantiomer 2: LC-MS Anal. Calc’d for C26H35N3O3 437.27, found [M+H] 438.24, Tr= 4.18 min (Method A). 1H NMR (400MHz, CHLOROFORM-d) δ 8.11 (d, J=1.5 Hz, 1H), 7.96 (s, 1H), 7.23 – 7.16 (m, 2H), 7.13 – 7.07 (m, 2H), 7.05 – 6.98 (m, 2H), 6.89 (dd, J=8.3, 1.7 Hz, 1H), 2.59 (q, J=8.7 Hz, 1H), 2.49 (d, J=7.3 Hz, 4H), 2.32 (s, 3H), 2.12 – 2.03 (m, 1H), 1.70 – 1.53 (m, 3H), 1.34 (td, J=8.2, 5.0 Hz, 1H), 0.75 (dd, J=6.6, 2.0 Hz, 12H) Example 1 – Method B

Enantiomer 1 and Enantiomer 2

Enantiomer 2: (lS,2R)-2-(4-(diisobutylamino)-3-(3-(p- tolyl)ureido)phenyl)cyclopropanecarboxylic acid

Figure imgf000063_0001

IE. 4-(5,5-dimethyl-l,3,2-dioxaborinan-2-yl)-N,N-diisobutyl-2-nitroaniline

1A (10 g, 30.4 mmol), 5,5,5′,5′-tetramethyl-2,2′-bi(l,3,2-dioxaborinane) (7.55 g, 33.4 mmol), PdCl2(dppf)- CH2C12 adduct (0.556 g, 0.759 mmol) and potassium acetate

(8.94 g, 91 mmol) were combined in a round bottom flask, and DMSO (100 mL) was added. It was vacuated and back-filled with N2 three times, then heated at 80 °C for 8 h. Reaction was complete by LC-MS. Cooled to RT and passed through a short plug of silica gel, rinsed with a mixture of Hexane/EtOAc (5: 1) (3×100 mL). After removing the solvent in vacuo, purification via flash chromatography gave IE (orange oil, 9 g, 22.36 mmol, 73.6 % yield), LC-MS Anal. Calc’d for C19H31BN2O4 362.24, found [M+H] 295.18 (mass of boronic acid), Tr = 3.65 min (Method A). 1H NMR (400MHz,

CHLOROFORM-d) δ 8.13 (d, J=1.8 Hz, 1H), 7.73 (dd, J=8.4, 1.5 Hz, 1H), 7.04 (d, J=8.6 Hz, 1H), 3.75 (s, 4H), 3.00 – 2.92 (m, 4H), 1.93 (dquin, J=13.5, 6.8 Hz, 2H), 1.02 (s, 6H), 0.93 – 0.79 (m, 12H)

IF. (lS,2R)-ethyl 2-(4-(diisobutylamino)-3-nitrophenyl)

cyclopropanecarboxylate

To IE (9 g, 22.36 mmol) in a 500 mL round bottom flask was added 1,4-dioxane (60 mL). After it was dissolved, cesium carbonate (15.30 g, 47.0 mmol) was added. To the suspension was then added water (30 mL) slowly. It became an homogeneous solution. Enantiopure (lR,2R)-ethyl 2-iodocyclopropanecarboxylate (5.90 g, 24.59 mmol) (For synthesis see Organic Process Research & Development 2004, 8, 353-359 ) was then added. The resulting mixture was purged with nitrogen for 25 min. Then PdCl2(dppf)-

CH2C12 adduct (1.824 g, 2.236 mmol) was added. The reaction mixture was purged with nitrogen for another 10 min. It became dark brown colored solution. This mixture was then stirred under nitrogen at 87 °C for 22 h. LC-MS indicated product formation and depletion of starting material. It was then cooled to RT. After removing solvent under reduced pressure, it was diluted with EtOAc (50 mL) and water (50 mL). Organic layer was separated and the aqueous layer was further extracted with EtOAc (3x 30 mL). The combined organic layers were washed with brine, dried over MgS04, filtered and concentrated. Purification via flash chromatography gave IF (dark orange oil, 3.2 g, 8.83 mmol, 39.5 % yield), LC-MS Anal. Calc’d for C20H30N2O4 362.22, found [M+H] 363.3, Tr = 3.89 min (Method A). 1H NMR (400MHz, CHLOROFORM-d) 57.65 – 7.60 (m, 1H), 7.29 (d, J=2.2 Hz, 1H), 7.02 (d, J=8.6 Hz, 1H), 3.95 – 3.84 (m, 2H), 2.89 (d, J=7.3 Hz, 4H), 2.48 (q, J=8.6 Hz, 1H), 2.07 (ddd, J=9.2, 7.9, 5.7 Hz, 1H), 1.87 (dquin, J=13.5, 6.8 Hz, 2H), 1.67 (dt, J=7.3, 5.5 Hz, 1H), 1.38 – 1.28 (m, 1H), 0.99 (t, J=7.2 Hz, 3H), 0.82 (d, J=6.6 Hz, 12H

IG. (lS,2R)-ethyl 2-(3-amino-4-(diisobutylamino)phenyl)

cyclopropanecarboxylate

To a stirred solution of IF (5.5 g, 15.17 mmol) in EtOAc (150 mL) was added palladium on carbon (1.615 g, 1.517 mmol) and the suspension was hydrogenated (1 atm, balloon) for 1.5 h. LC-MS indicated completion. The suspension was filtered through a pad of Celite and the filter cake was rinsed with EtOAc (2×50 mL). Combined filtrate and rinses were concentrated under reduced pressure. Purification via flash chromatography gave 1G (yellow oil, 4.5 g, 13.53 mmol, 89 % yield). LC-MS Anal. Calc’d for

C20H32N2O2 332.25, found [M+H] 333.06, Tr = 2.88 min (Method A). 1H NMR

(400MHz, CHLOROFORM-d) δ 6.95 (d, J=7.9 Hz, 1H), 6.68 – 6.58 (m, 2H), 4.06 (s, 2H), 3.93 – 3.81 (m, 2H), 2.57 (d, J=7.3 Hz, 4H), 2.47 (q, J=8.6 Hz, 1H), 2.01 (ddd, J=9.4, 7.8, 5.5 Hz, 1H), 1.78 – 1.59 (m, 3H), 1.30 – 1.18 (m, 1H), 0.92 (t, J=7.2 Hz, 3H), 0.89 (dd, J=6.6, 0.9 Hz, 12H)

Example 1 enantiomer 2 was prepared following the reduction, urea formation and basic saponification procedures in racemic example 1 method A except that saponification was carried out at 50 °C for 8 h instead of at RT. Chiral analytical analysis verified it was enantiomer 2 Tr = 10.646 min (Method J). Absolute stereochemistry was confirmed by referring to reference: Organic Process Research & Development 2004, 8, 353-359.

Enantiomer 1 Method B: (lR,2S)-2-(4-(diisobutylamino)-3

tolyl)ureido)phenyl)cyclopropanecarboxylic acid

Figure imgf000065_0001

1H. Single enantiomer (lR,2S)-ethyl 2-(3-amino-4-(diisobutylamino)phenyl) cyclopropanecarboxylate

1H was prepared following procedures in example 1 enantiomer 2 method B utilizing enantiopure (l S,2S)-ethyl 2-iodocyclopropanecarboxylate. This was obtained through chiral resolution modifying the procedure in Organic Process Research & Development 2004, 8, 353-359, using (i?)-(+)-N-benzyl-a-methylbenzylamine instead of (S)-(-)-N-benzyl-a-methylbenzylamine). LC-MS Anal. Calc’d for C20H32N2O2 332.25, found [M+H] 333.06, Tr = 2.88 min (Method A). 1H NMR (400MHz, CHLOROFORM- d) δ 6.95 (d, J=7.9 Hz, 1H), 6.68 – 6.58 (m, 2H), 4.06 (s, 2H), 3.93 – 3.81 (m, 2H), 2.57 (d, J=7.3 Hz, 4H), 2.47 (q, J=8.6 Hz, 1H), 2.01 (ddd, J=9.4, 7.8, 5.5 Hz, 1H), 1.78 – 1.59 (m, 3H), 1.30 – 1.18 (m, 1H), 0.92 (t, J=7.2 Hz, 3H), 0.89 (dd, J=6.6, 0.9 Hz, 12H).

Note: 1H was also made through chiral separation (Method I) of racemic (1R,2S)- ethyl 2-(3-amino-4-(diisobutylamino)phenyl)cyclopropanecarboxylate. Chiral analytical analysis (Method K) showed 1H as a single enantiomer (99 % ee).

Example 1 enantiomer 1 was prepared following the reduction, urea formation and basic saponification procedures in racemic example 1 method A using 1H except that saponification was carried out at 50 °C for 8 h instead of at RT. Chiral analytical analysis verified it was enantiomer 1 with 97.8% ee (Method J).

Example 1 – Method C

Enantiomer 1

(lR,2S)-2-(4-(diisobutylamino)-3-(3-(p-tolyl)ureido)phenyl)cyclopropanecarboxylic acid

Figure imgf000066_0001

II. Diastereomer 1: (R)-4-benzyl-3-((lR,2S)-2-(4-(diisobutylamino)-3- nitrophenyl)cyclopropanecarbonyl)oxazolidin-2-one

Diastereomer 2: (R)-4-benzyl-3-((l S,2R)-2-(4-(diisobutylamino)-3- nitrophenyl)cyclopropanecarbonyl)oxazolidin-2-one: 1C (1.2 g, 3.31 mmol) was dissolved in THF (20 mL), NaOH (IN aqueous) (8.28 mL, 8.28 mmol) was added. Saw precipitate formed, then MeOH (5.00 mL) was added and it turned into a clear yellow solution. The reaction was monitored by LC-MS. After 24 h, reaction was complete. Most MeOH and THF was removed in vacuo and the crude was diluted with 10 mL of water, the pH was adjusted to ca. 2 using IN aqueous HC1. The aqueous phase was then extracted with EtOAc (3×30 mL) and the combined organic phase was washed with brine, dried over Na2S04 , filtered and concentrated to give 1.1 g of desired acid as an orange foam. This was used without purification in the subsequent step. To a solution of the crude acid from the previous step (1132 mg, 3.39 mmol) in THF (15 mL) cooled in an ice-water bath was added N-methylmorpholine (0.447 mL, 4.06 mmol) followed by slow addition of pivaloyl chloride (0.500 mL, 4.06 mmol). After stirring in an ice-water bath for 30 min, the reaction mixture was then cooled to -78 °C. In a separate reaction flask, ftBuLi (1.354 mL, 3.39 mmol) was added dropwise to a solution of (R)-4- benzyloxazolidin-2-one (600 mg, 3.39 mmol) in THF (15.00 mL). After 45 min at -78 °C, the solution was cannulated into the -78 °C anhydride mixture. After 30 min, the cooling bath was removed and the solution was allowed to warm to RT. After 1 h, LC-MS indicated completion. The reaction was quenched by addition of saturated aqueous NH4C1. The solution was then partitioned between EtOAc and water. The organic phase was further extracted with EtOAc (2×30 mL). The combined organic extracts were washed with water, brine, dried over MgS04, filtered and concentrated. Purification via flash chromatography gave II Diastereomer 1 (yellow oil, 600 mg, 1.216 mmol, 35.9 % yield). Diastereomer 2 (yellow oil, 450 mg, 0.912 mmol, 26.9 % yield) LC-MS Anal. Calc’d for C28H35N305 493.26, found: [M+H] 494.23, Tr = 5.26 min (Diastereomer 1). Tr = 5.25 min (Diastereomer 2) (Method A). Diastereomer 1 : 1H NMR (400MHz,

CHLOROFORM-d) δ 7.56 (d, J=1.8 Hz, 1H), 7.35 – 7.23 (m, 4H), 7.18 – 7.12 (m, 2H), 7.03 (d, J=8.8 Hz, 1H), 4.37 (ddt, J=9.6, 7.3, 3.6 Hz, 1H), 4.11 – 4.06 (m, 2H), 3.48 – 3.40 (m, 1H), 3.22 (dd, J=13.4, 3.5 Hz, 1H), 2.89 (d, J=7.3 Hz, 4H), 2.77 – 2.66 (m, 2H), 1.97 – 1.81 (m, 3H), 1.52 – 1.44 (m, 1H), 0.82 (d, J=6.6 Hz, 12H); Diastereomer 2: 1H NMR (400MHz, CHLOROFORM-d) δ 7.62 (d, J=2.0 Hz, 1H), 7.36 – 7.19 (m, 4H), 7.09 – 6.97 (m, 3H), 4.45 (ddt, J=10.2, 7.2, 3.0 Hz, 1H), 4.14 – 4.05 (m, 2H), 3.45 – 3.36 (m, 1H), 2.80 (d, J=7.3 Hz, 4H), 2.52 (dd, J=13.3, 3.2 Hz, 1H), 2.19 (dd, J=13.2, 10.3 Hz, 1H), 2.03 (dt, J=7.2, 5.8 Hz, 1H), 1.72 (dquin, J=13.4, 6.8 Hz, 2H), 1.45 (ddd, J=8.3, 7.3, 5.3 Hz, 1H), 0.64 (dd, J=6.6, 2.0 Hz, 12H) 1 J. (lR,2S)-methyl 2-(4-(diisobutylamino)-3-nitrophenyl)

cyclopropanecarboxylate

To a solution of II Diastereomer 1 (460 mg, 0.932 mmol) in THF (6mL) at 0 °C was added hydrogen peroxide (0.228 mL, 3.73 mmol). Then a solution of lithium hydroxide monohydrate (44.6 mg, 1.864 mmol) in water (2.000 mL) was added to the cold THF solution and stirred for 6 h. LC-MS indicated completion, then 2 mL of saturated aqueous Na2S03 was added followed by 3 mL of saturated aqueous NaHC03. The mixture was concentrated to remove most of the THF. The solution was then diluted with 5 mL of water. The aqueous solution was acidified with 1 N aqueous HC1 and extracted with EtOAc (3×20 mL). The combined organic extracts was washed with water, brine, dried over MgS04, filtered and concentrated to give 300 mg acid. To a solution of the crude acid from previous step (300 mg, 0.897 mmol) in MeOH (10 mL) was added 6 drops of concentrated H2SO4. The resulting solution was stirred at 50 °C for 6 h. After LC-MS indicated completion, solvent was removed under reduced pressure. It was then diluted with 5 mL of water, the aqueous layer was then extracted with EtOAc (3×20 mL) and the combined organic extracts were washed with water, brine, dried with Na2S04, filtered and concentrated. Purification via flash chromatography gave 1J (orange oil, 260 mg, 0.746 mmol, 83 % yield). LC-MS Anal. Calc’d for Ci9H28N204 348.20, found:

[M+H] 349.31 , Tr = 3.87 min (Method A). 1H NMR (400MHz, CHLOROFORM-d) δ

7.66 – 7.61 (m, 1H), 7.31 – 7.25 (m, 1H), 7.04 (d, J=8.8 Hz, 1H), 3.47 (s, 3H), 2.90 (d, J=7.3 Hz, 4H), 2.54 – 2.44 (m, 1H), 2.14 – 2.04 (m, 1H), 1.89 (dquin, J=13.5, 6.8 Hz, 2H),

1.67 (dt, J=7.5, 5.5 Hz, 1H), 1.42 – 1.31 (m, 1H), 0.83 (dd, J=6.6, 1.1 Hz, 12H)

IK. (lR,2S)-methyl 2-(3-amino-4-(diisobutylamino)phenyl)

cyclopropanecarboxylate

To a stirred solution of 1 J (100 mg, 0.287 mmol) in EtOAc (5mL) was added palladium on carbon (30.5 mg, 0.029 mmol) and the suspension was hydrogenated (1 atm, balloon) for 2 h. LC-MS indicated completion. The suspension was filtered through a pad of Celite and the filter cake was rinsed with EtOAc (20 mL). Combined filtrate and rinses were concentrated. Purification via flash chromatography gave IK (yellow oil, 90 mg, 0.287 mmol, 99 % yield). LC-MS Anal. Calc’d for Ci9H3oN202 318.23, found:

[M+H] 319.31 , Tr = 2.72 min (Method A). 1H NMR (400MHz, CHLOROFORM-d) δ 6.95 (d, J=8.1 Hz, 1H), 6.65 (d, J=1.8 Hz, 1H), 6.60 (dd, J=8.1 , 1.5 Hz, 1H), 4.08 (br. s., 2H), 3.42 (s, 3H), 2.58 (d, J=7.0 Hz, 4H), 2.52 – 2.42 (m, 1H), 2.09 – 1.98 (m, 1H), 1.79 – 1.59 (m, 3H), 1.32 – 1.22 (m, 1H), 0.94 – 0.84 (m, 12H)

Enantiomer 1 was prepared following the urea formation and saponification procedure in racemic example 1 method A. Chiral analytical analysis verified it was enantiomer 1 with 98.1% ee (Method J).

Example 1 – Method C Enantiomer 2

(lS,2R)-2-(4-(diisobutylamino)-3-(3-(p-tolyl)ureido)phenyl)cyclopropanecarboxylic acid

Figure imgf000069_0001

Example 1 Enantiomer 2 was prepared following the procedure for Example 1 enantiomer 1 method C using diastereomer 2 instead of diastereomer 1. Chiral analytical analysis verified it was enantiomer 2 with 94.0% ee (Method J).

PAPER

https://pubs.acs.org/doi/10.1021/acs.oprd.8b00171

Development of a Scalable Synthesis of BMS-978587 Featuring a Stereospecific Suzuki Coupling of a Cyclopropane Carboxylic Acid

 Chemical Development and API SupplyBiocon Bristol-Myers Squibb Research and Development CenterBiocon Park, Jigani Link Road, Bommasandra IV, Bangalore-560099, India
 Chemical and Synthetic DevelopmentBristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.8b00171
*E-mail: vaidy@bms.com.
Abstract Image

A modified synthetic route to BMS-978587 was developed featuring a chemoselective nitro reduction and a stereospecific Suzuki coupling as the key bond formation steps. A systematic evaluation of the reaction conditions led to the identification of a robust catalyst/ligand/base combination to reproducibly effect the Suzuki reaction on large scale. The modified route avoided several challenges with the original synthesis and furnished the API in high overall yield and purity without recourse to chromatography.

(1R,2S)-2-[4-(Di-isobutylamino)-3-(3-(p-tolyl)ureido)phenyl] Cyclopropanecarboxylic Acid (1)

………… afford 1 as a white solid (510 g, 99.05 HPLC area % purity, 96.0% potency, 60% yield; Pd content: <10 ppm).
1H NMR (300 MHz, DMSO-d6) 11.83 (br s, 1H), 9.30 (s, 1H), 7.90 (d, 1H, J = 1.5 Hz), 7.82 (s, 1H), 7.35–7.37 (d, 2H, J = 8.1 Hz), 7.06–7.10 (q, 3H, J = 2.1, 6.3, and 2.1 Hz), 6.78–6.80 (t, 1H, J = 6.3 and 1.8 Hz), 2.50–2.72 (m, 4H), 2.25 (s, 3H), 1.934–2.01 (m, 1H), 1.59–1.65 (m, 2H), 1.20–1.41 (m, 2H), 0.81(m, 13H);
13C NMR (100 MHz, DMSO-d6) 172.2, 153.0, 139.0, 137.8, 135.2, 133.1, 131.2, 129.6, 123.0, 122.1, 121.4, 119.4, 63.6, 26.3, 25.3, 21.9, 21.6, 20.8, 11.4.
HRMS (ESI) m/zcalcd for C26H36N3O3 [M + H]+ 438.2757, found 438.2714.

REF

(a) Balog, J. A.Huang, A.Chen, B.Chen, L.Seitz, P.Hart, A. C.Markwalder, J. A. Preparation of cycloalkylaryl amide compounds as indoleamine 2,3-dioxygenase and therapeutic uses thereof, PCT Int. Appl. 2014WO 2014150677A1 20140925.

(b) Balog, J. A.Cherney, E. C.Guo, W.Huang, A.Markwalder, J. A.Seitz, S. P.Shan, W.Williams, D. K.Murugesan, N.Nara, S.Jethanand; Preparation of benzenediamine derivatives as inhibitors of indoleamine 2,3-dioxygenase for the treatment of cancer, PCT Int. Appl. 2016WO 2016161269A1 20161006.

(c) Markwalder, J. A.Seitz, S. P.Hart, A.Nation, A.Balog, A.Vite, G.Borzilleri, R.Jure-Kunkel, M.Chen, B.Chen, L.Newitt, J.Lu, H.Abell, L.Lin, T.-A.Covello, K.Hunt, J.D’Arienzo, C.Fargnoli, J.Ranasinghe, A.Traeger, S. C. Manuscript in preparation.
D
Swift, E. C.Jarvo, E. R. Asymmetric transition metal-catalyzed cross-coupling reactions for the construction of tertiary stereocentersTetrahedron 2013695799– 5817DOI: 10.1016/j.tet.2013.05.001
E
Proceedings of the National Academy of Sciences of the United States of America2018vol. 115  13p. 3249 – 3254

////////////BMS-978587, IDO-IN-4, 1629125-65-0,  CS-5086, BMS978587, BMS 978587

OC(=O)[C@@H]3C[C@@H]3c2cc(NC(=O)Nc1ccc(C)cc1)c(cc2)N(CC(C)C)CC(C)C

Ivosidenib,  ивосидениб , إيفوزيدينيب , 艾伏尼布 , 

$
0
0
Ivosidenib.svg

Ivosidenib

AG-120; TIBSOVO
FDA approves first targeted treatment Tibsovo (ivosidenib) for patients with relapsed or refractory acute myeloid leukemia who have a certain genetic mutation
The U.S. Food and Drug Administration today approved Tibsovo (ivosidenib) tablets for the treatment of adult patients with relapsed or refractory acute myeloid leukemia (AML) who have a specific genetic mutation. This is the first drug in its class (IDH1 inhibitors) and is approved for use with an FDA-approved companion diagnostic used to detect specific mutations in the IDH1 gene in patients with AML.
“Tibsovo is a targeted therapy that fills an unmet need for patients with relapsed or refractory AML who have an IDH1 mutation,” said Richard Pazdur, M.D., director of the FDA’s Oncology Center of Excellence and acting director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research. “The use of Tibsovo is associated with a complete remission in some patients and a reduction in the need for both red cell and platelet transfusions.”

July 20, 2018

Release

The U.S. Food and Drug Administration today approved Tibsovo (ivosidenib) tablets for the treatment of adult patients with relapsed or refractory acute myeloid leukemia (AML) who have a specific genetic mutation. This is the first drug in its class (IDH1 inhibitors) and is approved for use with an FDA-approved companion diagnostic used to detect specific mutations in the IDH1 gene in patients with AML.

“Tibsovo is a targeted therapy that fills an unmet need for patients with relapsed or refractory AML who have an IDH1 mutation,” said Richard Pazdur, M.D., director of the FDA’s Oncology Center of Excellence and acting director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research. “The use of Tibsovo is associated with a complete remission in some patients and a reduction in the need for both red cell and platelet transfusions.”

AML is a rapidly progressing cancer that forms in the bone marrow and results in an increased number of abnormal white blood cells in the bloodstream and bone marrow. The National Cancer Institute at the National Institutes of Health estimates that approximately 19,520 people will be diagnosed with AML this year; approximately 10,670 patients with AML will die of the disease in 2018.

Tibsovo is an isocitrate dehydrogenase-1 inhibitor that works by decreasing abnormal production of the oncometabolite 2-hydroxyglutarate (2-HG), leading to differentiation of malignant cells. If the IDH1 mutation is detected in blood or bone marrow samples using an FDA-approved test, the patient may be eligible for treatment with Tibsovo. Today the agency also approved the RealTime IDH1 Assay, a companion diagnostic that can be used to detect this mutation.

The efficacy of Tibsovo was studied in a single-arm trial of 174 adult patients with relapsed or refractory AML with an IDH1 mutation. The trial measured the percentage of patients with no evidence of disease and full recovery of blood counts after treatment (complete remission or CR), as well as patients with no evidence of disease and partial recovery of blood counts after treatment (complete remission with partial hematologic recovery or CRh). With a median follow-up of 8.3 months, 32.8 percent of patients experienced a CR orCRh that lasted a median 8.2 months. Of the 110 patients who required transfusions of blood or platelets due to AML at the start of the study, 37 percent went at least 56 days without requiring a transfusion after treatment with Tibsovo.

Common side effects of Tibsovo include fatigue, increase in white blood cells, joint pain, diarrhea, shortness of breath, swelling in the arms or legs, nausea, pain or sores in the mouth or throat, irregular heartbeat (QT prolongation), rash, fever, cough and constipation. Women who are breastfeeding should not take Tibsovo because it may cause harm to a newborn baby.

Tibsovo must be dispensed with a patient Medication Guide that describes important information about the drug’s uses and risks. The prescribing information for Tibsovo includes a boxed warning that an adverse reaction known as differentiation syndrome can occur and can be fatal if not treated. Signs and symptoms of differentiation syndrome may include fever, difficulty breathing (dyspnea), acute respiratory distress, inflammation in the lungs (radiographic pulmonary infiltrates), fluid around the lungs or heart (pleural or pericardial effusions), rapid weight gain, swelling (peripheral edema) or liver (hepatic), kidney (renal) or multi-organ dysfunction. At first suspicion of symptoms, doctors should treat patients with corticosteroids and monitor patients closely until symptoms go away.

Other serious warnings include a QT prolongation, which can be life-threatening. Electrical activity of the heart should be tested with an electrocardiogram during treatment. Guillain-Barré syndrome, a rare neurological disorder in which the body’s immune system mistakenly attacks part of its peripheral nervous system, has happened in people treated with Tibsovo, so patients should be monitored for nervous system problems.

The FDA granted this application Fast Track and Priority Review designations. Tibsovo also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The FDA granted the approval of Tibsovo to Agios Pharmaceuticals, Inc. The FDA granted the approval of the RealTime IDH1 Assay to Abbott Laboratories.

ChemSpider 2D Image | ivosidenib | C28H22ClF3N6O3

ivosidenib

  • Molecular FormulaC28H22ClF3N6O3
  • Average mass582.961 Da
1448347-49-6 [RN]
2-Pyrrolidinecarboxamide, N-[(1S)-1-(2-chlorophenyl)-2-[(3,3-difluorocyclobutyl)amino]-2-oxoethyl]-1-(4-cyano-2-pyridinyl)-N-(5-fluoro-3-pyridinyl)-5-oxo-, (2S)-
AG-120
UNII:Q2PCN8MAM6
ивосидениб [Russian] [INN]
إيفوزيدينيب [Arabic] [INN]
艾伏尼布 [Chinese] [INN]

Ivosidenib is an experimental drug for treatment of cancer. It is a small molecule inhibitor of IDH1, which is mutated in several forms of cancer. The drug is being developed by Agios Pharmaceuticals and is in phase III clinical trials. The FDA awarded orphan drug statusfor acute myeloid leukemia and cholangiocarcinoma.[1][better source needed]

It is in a phase III clinical trial for acute myeloid leukemia (AML) with an IDH1 mutation and a phase III clinical trial for cholangiocarcinoma with an IDH1 mutation.[2]

  • OriginatorAgios Pharmaceuticals
  • DeveloperAbbVie; Agios Pharmaceuticals; University of Texas M. D. Anderson Cancer Center
  • ClassAntineoplastics; Cyclobutanes; Nitriles; Pyridines; Pyrrolidines; Small molecules
  • Mechanism of ActionIsocitrate dehydrogenase 1 inhibitors
  • Orphan Drug StatusYes – Acute myeloid leukaemia; Cholangiocarcinoma
  • New Molecular EntityYes

Highest Development Phases

  • PreregistrationAcute myeloid leukaemia
  • Phase IIICholangiocarcinoma
  • Phase IGlioma; Myelodysplastic syndromes; Solid tumours

Most Recent Events

  • 28 Jun 2018Massachusetts General Hospital and Agios Pharmaceuticals plan a phase I trial for Acute myeloid leukaemia; Myelodysplastic syndromes and Chronic myelomonocytic leukaemia (Maintenance therapy) in USA (NCT03564821)
  • 26 Jun 2018Ivosidenib licensed to CStone Pharmaceuticals in China, Hong Kong, Macau and Taiwan
  • 14 Jun 2018Efficacy and adverse events data from a phase I trial in Acute myeloid leukaemia presented at the 23rd Congress of the European Haematology Association (EHA-2018)
Ivosidenib
Ivosidenib.svg
Clinical data
Routes of
administration
Oral
ATC code
  • None
Legal status
Legal status
  • Investigational
Identifiers
CAS Number
PubChem CID
ChemSpider
UNII
Chemical and physical data
Formula C28H22ClF3N6O3
Molar mass 582.97 g·mol−1
3D model (JSmol)
///////////////Tibsovo, ivosidenib, fda 2018,  Fast Track, Priority Review ,  Orphan Drug designation, UNII:Q2PCN8MAM6, ивосидениб , إيفوزيدينيب , 艾伏尼布 ,

Vilanterol trifenatate, ビランテロールトリフェニル酢酸塩

$
0
0

Vilanterol trifenatate.pngThumb

ThumbImage result for Vilanterol Trifenatate

str1

Vilanterol trifenatate, ビランテロールトリフェニル酢酸塩

ビランテロールトリフェナテート

UNII-40AHO2C6DG; GW642444M; CAS 503070-58-4

free form, 503068-34-6

HY-14300ACS-1679

444
642444
GSK-642444
GW-642444
GW-642444M

4-[(1R)-2-[6-[2-[(2,6-dichlorophenyl)methoxy]ethoxy]hexylamino]-1-hydroxyethyl]-2-(hydroxymethyl)phenol;2,2,2-triphenylacetic acid

1,3-Benzenedimethanol, α1-[[[6-[2-[(2,6-dichlorophenyl)methoxy]ethoxy]hexyl]amino]methyl]-4-hydroxy-, (α1R)-
4-{(1R)-2-[(6-{2-[(2,6-Dichlorbenzyl)oxy]ethoxy}hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol
Molecular Formula: C44H49Cl2NO7
Molecular Weight: 774.776 g/mol

4-[(1R)-2-({6-[(2-{[(2,6-Dichlorophenyl)methyl]oxy}ethyl)oxy]hexyl}-amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol Acetate Salt

J. Med. Chem.201053 (11), pp 4522–4530
DOI: 10.1021/jm100326d

white crystalline solid: mp (DSC) 131.9−134.2 °C, [α]D 20 −14.6 (c 1.034 in MeOH). MS ES +ve m/z 289, 486/488 (M + H)+1H NMR δ (500 MHz, CD3OD) 7.47 (2H, m), 7.38 (8H, m), 7.28 (6H, tt, J 7.1, 1.8 Hz), 7.22 (4H, m), 6.86 (1H, d, J 7.9 Hz), 4.94 (1H, dd, J 9.7, 4.6 Hz), 4.91 (2H, s), 4.74 (2H, s), 3.79 (2H, m), 3.69 (2H, m), 3.56 (2H, t, J 6.1 Hz), 3.10 (2H, m), 2.99 (2H, m), 1.72 (2H, m), 1.65 (2H, m), 1.45 (4H, m). 13C NMR δ (125 MHz, CD3OD) 180.1, 156.2, 147.7, 140.3, 137.9, 134.5, 133.0, 131.9, 131.6, 129.6, 128.9, 128.1, 127.1, 127.0, 126.7, 116.0, 72.1, 71.4, 71.3, 71.1, 70.1, 68.4, 60.9, 55.4, 48.9, 30.5, 27.4, 27.1, 26.8. Anal. found: C, H, N, Cl.

Vilanterol is a selective long-acting beta2-adrenergic agonist (LABA) with inherent 24-hour activity for once daily treatment of COPD and asthma. Its pharmacological effect is attributable to stimulation of intracellular adenylyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3′,5′-adenosine monophosphate (cAMP). Increases in cyclic AMP are associated with relaxation of bronchial smooth muscle and inhibition of release of hypersensitivity mediators from mast cells in the lungs.

Vilanterol is approved for use in several combination products such as with fluticasone furoate under the tradename Breo Ellipta and in combination with umeclidinium bromide as Anoro Ellipta. Approved by the FDA in 2013, use of Breo Ellipta is indicated for the long-term, once-daily maintenance treatment of airflow obstruction in patients with COPD, including chronic bronchitis and emphysema. It is also indicated for once-daily maintenance treatment of asthma in patients aged 18 or older with reversible obstructive airways disease.

Vilanterol is approved for use in several combination products such as with fluticasone furoate under the tradename Breo Ellipta and in combination with umeclidinium bromide as Anoro Ellipta. Approved by the FDA in 2013, use of Breo Ellipta is indicated for the long-term, once-daily maintenance treatment of airflow obstruction in patients with COPD, including chronic bronchitis and emphysema. It is also indicated for once-daily maintenance treatment of asthma in patients aged 18 or older with reversible obstructive airways disease.

Vilanterol (INNUSAN) is an ultra-long-acting β2 adrenoreceptor agonist (ultra-LABA), which was approved in May 2013 in combination with fluticasone furoate for sale as Breo Ellipta by GlaxoSmithKline for the treatment of chronic obstructive pulmonary disease (COPD).[1]

Vilanterol is available in following combinations:

The other active component of BREO ELLIPTA is vilanterol trifenatate, a LABA with the chemical name triphenylacetic acid-4-{(1R)-2-[(6-{2-[2,6-dicholorobenzyl)oxy]ethoxy} hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol (1:1) and the following chemical structure:

Vilanterol trifenatate - Structural Formula Illustration

Vilanterol trifenatate is a white powder with a molecular weight of 774.8, and the empirical formula is C24H33Cl2NO5•C20H16O2. It is practically insoluble in water.

Image result for Vilanterol Trifenatate

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/203975Orig1s000ChemR.pdf

PATENT

WO 2003024439

https://patents.google.com/patent/WO2003024439A1/ru

PAPER

 Journal of Medicinal Chemistry (2010), 53(11), 4522-4530

Abstract Image

A series of saligenin β2 adrenoceptor agonist antedrugs having high clearance were prepared by reacting a protected saligenin oxazolidinone with protected hydroxyethoxyalkoxyalkyl bromides, followed by removal of the hydroxy-protecting group, alkylation, and final deprotection. The compounds were screened for β2, β1, and β3 agonist activity in CHO cells. The onset and duration of action in vitro of selected compounds were assessed on isolated superfused guinea pig trachea. Compound 13f had high potency, selectivity, fast onset, and long duration of action in vitro and was found to have long duration in vivo, low oral bioavailability in the rat, and to be rapidly metabolized. Crystalline salts of 13f (vilanterol) were identified that had suitable properties for inhaled administration. A proposed binding mode for 13f to the β2-receptor is presented.

Synthesis and Structure−Activity Relationships of Long-acting β2Adrenergic Receptor Agonists Incorporating Metabolic Inactivation: An Antedrug Approach

 Departments of Medicinal Chemistry
 Respiratory Biology
§ Computational Structural Chemistry
 Drug Metabolism and Pharmacokinetics
Respiratory CEDD, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
 Synthetic Chemistry, GlaxoSmithKline, Old Powder Mills, Near Leigh, Tonbridge, Kent TN11 9AN, United Kingdom
J. Med. Chem.201053 (11), pp 4522–4530
DOI: 10.1021/jm100326d
*To whom correspondence should be addressed. Phone: (+44)1438 762883. Fax: (+44)1438 768302. E-mail: pan.a.procopiou@gsk.com

4-[(1R)-2-({6-[(2-{[(2,6-Dichlorophenyl)methyl]oxy}ethyl)oxy]hexyl}-amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol (13f) Triphenylacetate Salt

Triphenylacetic acid (1.81 g, 6.28 mmol) was added to a solution of 4-((R)-2-{6-[2-(2,6-dichlorobenzyloxy)-ethoxy]-hexylamino}-1-hydroxyethyl)-2-hydroxymethyl-phenol (95% pure; 3.28 g, 6.41 mmol) in EtOH (20 mL), and the mixture heated to 80 °C to obtain a solution. The mixture was allowed to cool to ambient temperature, and the resulting product filtered, washed with a little ethanol, then dried in vacuo at 50 °C to afford 13f-triphenylacetate salt (4.3 g, 88%) as a white crystalline solid: mp (DSC) 131.9−134.2 °C, [α]D20 −14.6 (c 1.034 in MeOH). MS ES +ve m/z 289, 486/488 (M + H)+1H NMR δ (500 MHz, CD3OD) 7.47 (2H, m), 7.38 (8H, m), 7.28 (6H, tt, J 7.1, 1.8 Hz), 7.22 (4H, m), 6.86 (1H, d, J 7.9 Hz), 4.94 (1H, dd, J 9.7, 4.6 Hz), 4.91 (2H, s), 4.74 (2H, s), 3.79 (2H, m), 3.69 (2H, m), 3.56 (2H, t, J 6.1 Hz), 3.10 (2H, m), 2.99 (2H, m), 1.72 (2H, m), 1.65 (2H, m), 1.45 (4H, m). 13C NMR δ (125 MHz, CD3OD) 180.1, 156.2, 147.7, 140.3, 137.9, 134.5, 133.0, 131.9, 131.6, 129.6, 128.9, 128.1, 127.1, 127.0, 126.7, 116.0, 72.1, 71.4, 71.3, 71.1, 70.1, 68.4, 60.9, 55.4, 48.9, 30.5, 27.4, 27.1, 26.8. Anal. found: C, H, N, Cl.
Patent
CN 103923058

β 2- adrenergic receptor agonist is most widely used in clinical treatment of asthma and chronic obstructive pulmonary disease drugs. Currently available on the market β2_ adrenoceptor agonists longest duration of action of 12 hours, which resulted in the need twice daily dosing. Over the last decade, the development of high potency, high selectivity, rapid onset, long duration of action, is administered once daily β2- adrenoreceptor agonists caused great concern in the pharmaceutical industry. Triflate vilanterol by Glaxo Group Limited to develop a new type of ultra-long-acting β 2- adrenergic receptor agonist, on 18 December 2013 by the US FDA clearance to market its drugs name Anoro Ellipta0

vilanterol chemical name is 4 – {(lR) -2 – [(6- {2 _ [(2,6- dichlorobenzyl) oxy] ethoxy} hexyl) amino] -1 – hydroxyethyl} -2_ (hydroxymethyl) phenol, having the formula as follows:

Figure CN103923058AD00031

At present the synthesis of chiral vilanterol reported mainly in the following two ways:

1, and references J.Med.Chem.2010,53,4522-4530 Patent W02003024439, synthetic routes such as

under:

Figure CN103923058AD00032

1.2, and references J.Med.Chem.2010,53,4522-4530 Patent W02003024439, synthetic routes such as

under:

Figure CN103923058AD00041

Two or more routes are carried over a key intermediate in the alkylation of the amine compound X and then deprotecting to give the target compound I. Use of highly toxic chiral oxazaborolidine key intermediate in the process for preparing a compound X as a catalyst is expensive, and serious environmental pollution can not be recycled, high production costs; while boron reducing agent used in the process alkoxy – tetrahydrofuran solution of dimethyl sulfide have high reactivity shortcomings need to use special equipment. Further, throughout the synthesis process used in amounts of sodium hydride, sodium hydride in the reaction process will emit a lot of heat, and the use of sodium hydride and stored under harsh conditions, there are security risks in industrial production, is not suitable for industrial production.

Laurus Labs Limited was improved synthesis process described above, Patent W02014041565, which scheme is as follows:

Figure CN103923058AD00042

While this synthesis will replace potassium t-butoxide, sodium hydride, to reduce the security risks in industrial production, but the process for preparing a key intermediate compound using X is still toxic as chiral oxazaborolidine catalyst, and environmental pollution high production cost issues remain unresolved.

An epoxy compound IV (preparation described in Bioorganic & Medicinal Chemistry Letters, 23 (5), 2013,1548-1552 and Patent CN101684074A) amine VI with a chiral auxiliary to give the chiral compound V.

Figure CN103923058AD00043

Wherein the amine is a chiral auxiliary or S- S- phenylethylamine naphthylethyl amine, amine chiral auxiliary used has S- (a) – methylbenzylamine, (S) -2_ A -1-phenylethylamine, S – (-) _ N- benzyl-1-phenylethylamine, S – (-) – l_ (l- naphthyl) ethylamine

Example a

(R) -1- (2,2- dimethyl–4H- benzo [d] [I, 3] dioxin-6-yl) _2_ (⑶-1- phenyl-ethylamino) ethanol, and the step of preparing a salt of I): 2, 2- dimethyl-6- ethylene prepared -4H- benzo [d] [I, 3] dioxane (compound of formula IV) burning

Was added to a three neck round bottom flask, 12.8 g of 2-bromo-1- (2,2-dimethyl -4H-1,3- benzodioxin-6-yl) (Compound of formula II) ethanone and 100 ml of methanol, stirred and dissolved it was cooled to -10 ° C, followed by the slow addition of 2.4 g of sodium borohydride addition was completed, the reaction at room temperature for 90 minutes. Was added to the reaction mixture quenched with 50 ml aqueous ammonium chloride solution, stirred and concentrated to remove most of the methanol for 10 minutes, then extracted with 50 ml of methylene chloride, the aqueous phase was repeatedly extracted three times with 50 ml dichloromethane and the combined organic phases . The organic phase was washed with 20 ml of distilled water and once with 20 ml of saturated brine once, dried over anhydrous sodium sulfate, filtered, and concentrated. Then a mixture of tetrahydrofuran and methanol in this step the resulting compound (about 12 g) was dissolved in a total volume of 200 ml (volume ratio of tetrahydrofuran to methanol is 1: 1), 20.8 g of potassium carbonate was added, and the reaction at room temperature for 18 hour. The reaction was concentrated to remove most of the organic solvent, 100 ml of distilled water was added to the concentrate, and then 60 ml of methylene chloride was separated out and the aqueous phase repeatedly extracted three times with 30 ml of methylene chloride, the organic phase was washed with 20 ml of distilled water once with 20 ml saturated brine once, dried over anhydrous sodium sulfate, and concentrated to give a white solid. Compound IV obtained in this step without further purification was used directly in the next reaction.

. [0012] Step 2): (R) -1- (2, 2 ~ _ methyl -4H- benzo [d] [I, 3] dioxo TK 6-yl) -2 – ((S preparation) -1-phenyl-ethylamino) ethanol

The 8.24 g of the epoxy compound IV dissolved in 30 ml dimethyl sulfoxide at room temperature was slowly added 5.8 g S- (a) – methylbenzylamine, and then controlling the reaction temperature at 60 ° C 3 hours, by TLC monitoring the reaction is complete. Wait until the reaction mixture was cooled, added to 90 ml saturated aqueous sodium bicarbonate, and extracted with ethyl acetate (3 x 50 mL), the organic phase was dried over anhydrous sodium sulfate, then filtered and concentrated to give (R) -1- (2, 2-methyl–4H- benzo [d] [1,3] dioxin-6-yl) -2 – ((S) -1- phenylethyl) ethanol The crude product was 10.3 g, yield rate of 73%. The crude product obtained in this step without further purification was used directly in the next salt-forming reaction. [0013] 1H-NMR (500 MHz, CDCl3) δ 1.27 (d, J = 12.2 Hz, 3H), 1.49 (s, 6H), 2.94 (dd, J = 24.8 and 11.4 Hz, 1H), 3.21 (dd, J = 24.8 and 11.4 Hz, 1H), 4.32-4.39 (m, 1H), 4.59 (s, 2H), 4.84 – 4.89 (m, 1H), 6.82 (d, J = 15.0 Hz, 1H), 7.06 (d , J = 3.1 Hz, 1H), 7.25 – 7.35 (m, 6H).

[0014] LC-MS: m / z = 328.1 (C20H25NO3 + H +).

[0015] Chiral HPLC: R- configuration: 96.4%, S- configuration: 3.6%.

[0016] Step 3) (! R) -1- (2,2- dimethyl-benzo -41- [(1] [1,3] dioxin-6-yl) -2 – (( preparation of different salts of 1-phenyl-ethylamino) ethanol 5)

Step 2) The obtained crude product was equally divided into four parts, each of 20 ml of methanol are added to the solvent, stirring at 40 ° C under conditions to dissolve and camphorsulfonic acid were added to a solution of four parts, methanesulfonic acid , oxalic acid and benzoic acid is added in an amount of 1.5 equivalent of the crude product, after the addition was complete, stirring was continued for 2 hours, allowed to stand overnight and cooled at 0 ° C, filtered, to give the corresponding salt. The results shown in the following table.

Figure CN103923058AD00061

[0017] Second Embodiment

(R) -1- (2,2- dimethyl–4H- benzo [d] [I, 3] dioxane _6_ yl) _2_ (⑶-2- methoxy-1-phenyl ethanol and salts thereof ethylamino)

Step I): (R) -1- (2, 2- dimethyl -4H- benzo [d] [I, 3] dioxin-6-yl) ~ 2 ~ (⑶-2- methoxy preparation of 1-phenyl-ethylamino) ethanol

The method of preparation of a Compound IV The procedure of Example I) the same embodiment.

[0018] The epoxy compound IV was added 8.24 g to 50 ml of acetonitrile solvent, stirring and dissolved slowly added

9.06 g S-2- methoxy-1-phenylethylamine, followed by stirring at 80 ° C for 6 hours. After completion of the reaction was monitored by TLC, the reaction mixture was concentrated. 30 ml of saturated aqueous sodium bicarbonate, and extracted with ethyl acetate (3×30 mL), the organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated to give (R) -1- (2, 2- dimethyl -4H- benzo [d] [1,3] dioxin-6-yl) -2 – ((S) -2_ gas-methoxy-1-phenylethyl-yl) ethanol 9.8 g crude was wide, wide rate of 68%. The crude product obtained in this step without further purification was used directly in the next salt-forming reaction.

[0019] 1H-NMR (500 MHz, CDCl3) δ 1.49 (s, 6H), 2.98 – 3.21 (m, 2H), 3.34 (s, 3H), 3.55 – 3.80 (m, 2H), 4.02 (dd, J = 12.4 and 2.3 Hz, 1H), 4.59 (s, 2H), 4.86 – 4.88 (m, 1H), 6.82 (d, J = 7.5 Hz, 1H), 7.06 (d, J = 1.4 Hz, 1H), 7.28 –

7.37 (m, 6H).

[0020] LC-MS: m / z = 358.0 (C21H27NO4 + H +).

[0021] Chiral HPLC: R- configuration: 97.1%, S- configuration: 2.9%.

[0022] Step 2) 😦 R) -l_ (2,2- dimethyl–4H- benzo [d] [l, 3] dioxin-6-yl) -2 – ((S) _2 preparation of different salts methoxy-1-phenyl-ethylamino) ethanol –

The procedure of Example I) thus-obtained crude product is equally divided into four parts, each mixed solvent was added 25 ml of ethanol and water (Vis: V # 1: 1) and stirred at 60 ° C under conditions so dissolved, then four solutions are each selected fumaric acid, malic acid, maleic acid and tartaric acid, acid is added in an amount 1.2 equivalents of crude product, after the addition was complete, stirring continued for 2 hours, allowed to stand between 5 ° C cooled overnight and filtered to give the corresponding salt. The results shown in the following table.

Figure CN103923058AD00071

[0023] Example three

(R) -2- (benzyl ((S) -1-phenylethyl) amino) -1- (2, 2 – dimethyl – -4H- benzo [d] [I, 3] dioxane ethanol and salts of 6-yl)

Step I): (R) _2_ (benzyl ((S) -1-phenylethyl) atmosphere yl) -1- (2, 2 – dimethyl – -4H- benzo [d] [I, 3] preparation dioxin-6-yl) ethanol

The method of preparation of a Compound IV The procedure of Example I) the same embodiment.

[0024] 8.24 g of the epoxy compound IV were added to 50 ml of tetrahydrofuran solvent, and stirred to dissolve slowly added

10.97 g (i) S-benzyl-1-N- phenethylamine, the reaction was refluxed for 4 hours, the reaction was complete by TLC monitoring. Wait until the reaction solution was cooled, 30 ml of saturated aqueous ammonium chloride was added, stirred at room temperature for 10 minutes, then add 3 g of sodium chloride, stirring was continued for 30 minutes standing layer, the aqueous phase was extracted with ethyl acetate (3×30 mL), the organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated to give (R) -2_ (benzyl ((S) -1-phenylethyl) amino) -1- (2, 2 – dimethyl -4H- benzo [d] [1,3] dioxin-6-yl) ethanol The crude product was 9.3 g, 56% yield. The crude product obtained in this step without further purification was used directly in the next salt-forming reaction.

[0025] 1H-NMR (500 MHz, CDCl3) δ 1.27 (d, J = 12.4 Hz, 3H), 1.49 (s, 6H), 2.78 – 3.21 (m, 2H), 3.46 (s, 1H), 4.00 – 4.08 (m, 2H), 4.59 (s, 2H), 4.85 – 4.88 (m, 1H), 6.81 (d, J = 14.9 Hz, 1H), 7.05 – 7.37 (m, 12H).

[0026] LC-MS: m / z = 418.1 (C27H31NO3 + H +).

[0027] Chiral HPLC: R- configuration: 95.8%, S- configuration: 4.2%.

[0028] Step 2): (R) _2- (benzyl ((S) -1-phenylethyl) gas-yl) -1- (2, 2 – dimethyl – -4H- benzo [d] [ preparation I 3] dioxin-6-yl) ethanol of different salts

A mixed solvent of water -.V The procedure of Example I embodiment) of the obtained crude product was equally divided into four parts, each of which shall propanol and 30 ml of water is 3: 2) at 80 ° C for dissolution while stirring, and then was added to four parts, respectively, fumaric acid, citric acid, maleic acid and tartaric acid, the acid is added in an amount 1.2 equivalents of crude product, after the addition was complete, stirring continued for 2 hours, allowed to stand at 5 ° C for cooling overnight and filtered, to give the corresponding salt. The results shown in the following table.

Figure CN103923058AD00081

[0029] Fourth Embodiment

(R) -1- (2,2- dimethyl–4Η- benzo [d] [I, 3] dioxane _6_-yl) -2- (S) -1- (naphthyl _1_ yl) ethanol and salts thereof ethylamino)

Step I): (R) -1- (2,2_ dimethyl -4H- benzo [d] [1,3] dioxin-6-yl) -2_

Preparation (S) _1_ (naphthalen-1-yl) ethylamino) ethanol Preparation of Compound IV in a procedure as in Example I) the same embodiment.

[0030] The 8.24 g of the epoxy compound IV were added to 40 ml _2_ N- methyl pyrrolidone was slowly added with stirring so that after dissolution 9.58 g S – (-) – 1- (1- naphthyl) ethylamine, temperature was controlled at 100 ° C for 6 hours, the reaction was complete by TLC monitoring. After the reaction was cooled, 60 ml of saturated aqueous sodium bicarbonate, and extracted with ethyl acetate (3X 50 ml), the organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated to give 00-1- (2,2-bis methyl-4! l-benzo [d] [l, 3] dioxin-6-yl) -2- (S) -1- (naphthalen-1-yl) ethylamino) ethanol The crude product 9.5 g, yield 63%. The crude product obtained in this step without further purification was used directly in the next salt-forming reaction.

[0031] 1H NMR (500 MHz, CDCl3) δ 1.40 (d, J = 11.9 Hz, 3H), 1.49 (s, 6H), 2.95 (dd, J = 24.7 and 11.0 Hz, 1H), 3.21 (dd, J = 24.9 and 11.0 Hz, 1H), 4.59 (s, 2H), 4.89 – 4.95 (m, 2H), 6.80 – 8.01 (m, I OH).

[0032] LC-MS: m / z = 378.2 (C24H27NO3 + H +).

[0033] Chiral HPLC: R- configuration: 97.8%, S- configuration: 2.3%.

[0034] Step 2): (R) -l_ (2,2- dimethyl–4H- benzo [d] [1,3] dioxin-6-yl) -2- (S) -1 preparation of (naphthalene-1-yl) ethylamino) ethanol salt of different –

The procedure of Example I embodiment) of the obtained crude product was equally divided into four parts, each of which shall solvent was added 25 ml of butanol was stirred at 80 ° C for the condition to be dissolved and then the mixture was four respective selection naphthalenesulfonic acid, camphorsulfonic acid, methanesulfonic acid and benzoic acid treatment, acid is added in an amount 1.5 equivalents crude product, after completion, stirring was continued for 2 hours, allowed to stand overnight and cooled at 0 ° C, filtered, to give the corresponding salt. The results shown in the following table.

Figure CN103923058AD00082

[0035] Embodiment V

(S) – (2- (tert-butoxy quasi-yl) ((R) -2- (2, 2- dimethyl-benzo [d] [I, 3] dioxin-6-yl) – 2 preparation amino) phenylacetate -2_ their salts light ~ ethyl)

The I step) (2S) – Preparation of [(tert-butoxycarbonyl) amino] (phenyl) acetate Patent Documents US8455514 and CN102120724A prepared (2S) according to – [(tert-butoxycarbonyl) amino] (phenyl) acetic acid methyl ester.

[0036] 1H-NMR (500 MHz, CDCl3) δ 1.42 (s, 9H), 3.67 (s, 3H), 6.19 (s, 1H), 7.20 – 7.38 (m, 5H).

[0037] Step 2): (S) – (2- (tert-butoxy quasi-yl) ((R) -2- (2,2- dimethyl-benzo [d] [I, 3] dioxane ) -2-6-yl) -2-hydroxyethyl) aminophenyl acetate

The 8.24 g of the epoxy compound IV were added to 30 ml of dimethyl sulfoxide, added slowly with stirring to dissolve after

12.72 g (2S) – [(tert-butoxycarbonyl) amino] (phenyl) acetate, the reaction temperature is controlled at 70 ° C 4 h, monitoring by TLC the reaction was complete. Wait until the reaction solution was cooled, added 60 mL of saturated aqueous sodium bicarbonate, and extracted with ethyl acetate (3 x 50 mL), the organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated to give (S) – (2- (tert oxycarbonyl group) ((R) -2- (2, 2- dimethyl-benzo [d] [l, 3] dioxin-6-yl) -2-hydroxyethyl) amino) phenyl _2_ acetate The crude product was 11.2 g, yield 59%. The crude product obtained in this step without further purification was used directly in the next salt-forming reaction.

[0038] 1H-NMR (500 MHz, CDCl3) δ 1.42 (s, 9H), 1.49 (s, 6H), 3.48 (dd, J = 23.7and 7.5 Hz, 1H), 3.67 (s, 3H), 3.78 ( dd, J = 24.8 and 7.6 Hz, 1H), 4.59 (s, 2H), 5.52 – 5.55 (m, 1H), 6.41 (s, 1H), 6.80 – 7.32 (m, 8H).

[0039] LC-MS: m / z = 472.1 (C26H33NO7 + H +).

[0040] Chiral HPLC: R- configuration: 96.1%, S- configuration: 4.0%.

[0041] Step 3) (S) – (2_ (tert quasi-yl) ((R) _2_ (2,2_-dimethyl-benzo [d] [1,3] dioxin-6-yl) preparation of amino group) of different salts of methyl-2-phenyl-2-hydroxyethyl)

Step 2) The obtained crude product was equally divided into four parts, each solvent were added 20 ml of methanol was stirred at 40 ° C under conditions to dissolve, then the mixture was four respective selection acid, hydrochloric acid, naphthalenesulfonic acid, and methanesulfonic acid treatment, acid is added in an amount 1.5 equivalents crude product, after completion, stirring was continued for 2 hours, allowed to stand overnight and cooled at 0 ° C, filtered, to give the corresponding salt. The results shown in the following table.

Figure CN103923058AD00091
PATENT
W02014041565

Vilanterol is chemically described as 4-{(lR)-2-[6-{2-(2, 6-dichlorobenzyl) oxy] ethoxy} hexyl) amino]- l-hydroxyethyl}-2-(hydroxymethyl) phenol as represented by Formula I.

Figure imgf000002_0001

Formula I The compound 4-{(lR)-2-[(6-{2-[(2,6-dicUorobenzyl)oxy]emoxy}hexyl)amino]-l- hydroxy ethyl} -2-(hydroxymethyl)phenol is specifically described in WO2003/024439, as are pharmaceutically acceptable salts thereof, in particular the acetate, triphenylacetate, a-phenylcinnamate, 1-naphthoate and (R)-mandelate salts. More specifically the preferred pharmaceutically acceptable salt is triphenylacetate salt.

The PCT publication WO 2003/024439, the corresponding US equivalent US 7,361,787 (herein after the ‘787 patent) and J.Med.Chem, 2010, 53, 4522-4530 discloses the process for preparation of vilanterol along with pharmaceutically acceptable salt. The ‘787 patent reaction sequence is schematically represented as follows:

Figure imgf000003_0001

The process described in the ‘787 patent uses alcoholic solvent during the acetonide cleavage of Formula XIV, which tends to result in the formation of the corresponding ether impurities. This requires repetitive purifications, which can be tedious to practice during scale up process. Moreover the dibromo hexane used in the process contains the corresponding 1, 5-dibromo alkanes which tends to react in the same sequential manner to generate the corresponding analogues, which requires repetitive purifications to separate out from the final API. The ‘787 patent imply the use of column chromatographic procedures which are not feasible on the commercial scale.

The ‘787 patent further elucidates the process for preparing (5R)-5-(2, 2-dimethyl-4H-l,

Figure imgf000003_0002

isomeric impurities for the chiral intermediate would carry forward during the process 2013/000556

which results in the formation of various isomeric impurities which are difficult to separate and need more tedious procedures. Moreover reagents like sodium hydride are difficult to handle during the scale up process as it tends to generate high exothermicity, which can affect the yield and purity of the said compound.

The purity and the yield of vilanterol trifenatate as per the disclosed process are not satisfactory and also the said process involves chromatography techniques to isolate the intermediate compounds. The said techniques are tedious, labor intensive, time consuming process not suitable for industrial scale and which in turn result to an increase in the manufacturing cost. Moreover the said process involves the use of vilanterol trifenatate which degrades to form certain impurities and results in the formation of the final compound with a lesser purity.

In view of intrinsic fragility there is a need in the art to develop a simple, industrially feasible and scalable process for the synthesis of vilanterol that would avoid the aforementioned difficulties. Moreover it becomes necessary to prepare highly chiral pure oxazolidinone intermediate to prepare chirally pure vilanterol.

Examplel2: Preparation of 4-((R)-2-{6-[2-(2, 6-Dichlorobenzyloxy)-ethoxy]- hexylamino}-l-hydroxy ethyl)-2-hydroxymethyI-phenol (I-Vilanterol)

Compound XTV (1.0 eqt) was dissolved in acetone (10V) under nitrogen at ambient temperature. The reaction mass was cooled to 0-5°C and 0.5N HCl (12V) was added slowly. The reaction mass was allowed to stir for completion over one hour period. The reaction mass was diluted with dichloromethane and water, followed by addition of saturated sodium bicarbonate solution (lOv) at 0-5°C. The organic layer was separated then washed successively with water/saturated brine and dried over sodium sulfate the solution was concentrated to dryness under vacuum to obtain the residue, followed by column chromatography (MeOH-DCM as eluent). The pure fractions were concentrated under vacuum to afford the title compound as pale yellow color oil.

Yield: 77%; purity by HPLC: 99.15%; Chiral purity: R-isomer: 99.97%; S-isomer: 0.03%

Examplel3: Preparation of 4-((R)-2-{6-[2-(2, 6-Dichlorobenzyloxy)-ethoxy]- hexylamino}-l-hydroxy ethyI)-2-hydroxymethyl-phenol triphenyl acetate (IA: Vilanterol trifenatate)

Triphenyl acetic acid (l.Oeqt) was added to a solution of compound I (l.Oeqt) in acetone (20V) at ambient temperature and the mixture heated to 50-55°C to obtain a homogenous solution. The mixture was allowed to cool to ambient temperature; the resultant product was filtered, washed with chilled acetone, dried under vacuum at 50°C to afford the title compound as a white solid.

Yield: 69%; purity by HPLC: 99.79%; chiral purity-R-isomer: 99.96%; S-isomer: 0.049%

Patent
CN 102120724
Patent
CN 104744270
PATENT
CN 104744271
Patent

β 2- adrenergic receptor agonist is most widely used in clinical treatment of asthma and chronic obstructive pulmonary disease drugs. Currently available on the market β 2- adrenoreceptor agonist longest duration of action of 12 hours, which resulted in the need twice daily dosing. Over the last decade, the development of high potency, high selectivity, rapid onset, long duration of action, once daily dosing of β 2- adrenoreceptor agonists caused great concern in the pharmaceutical industry. Three acid vilanterol by Glaxo Group Limited development of a new Ultralente β 2- adrenergic receptor agonists, having bronchodilatory action.

[0003] vilanterol chemical name is 4 – {(lR) -2 – [(6- {2 – [(2,6- dichlorobenzyl) oxy] ethoxy} hexyl) amino] – 1-hydroxyethyl} -2_ (hydroxymethyl) phenol, having the formula as follows:

Figure CN105646285AD00041

[0005] vilanterol synthetic routes are:

Figure CN105646285AD00042

[0007] (5R) -5- (2, 2- dimethyl -4H-1,3- benzodioxin-6-yl) -1,3-oxazolidin-2-one was prepared an important intermediate Whelan Castro. The synthesis of this intermediate are currently two main ways:

[0008] 1: Reference Laurus Labs Limited published patent W02014041565, its main synthetic routes are as follows:

[0009]

Figure CN105646285AD00051

[0010] obvious drawback of this method, the starting material is 4-bromo-2-hydroxymethyl-phenol, expensive, the next two steps harsh reaction conditions, where low temperature -75 ° C, and the yield rate is not high. Obviously not suitable for large-scale industrial production.

[0011] 2: Reference J. Med Chem 2010, 53, 4522-4530, and patent W02003024439, scheme is as follows:

Figure CN105646285AD00052

[0013]

Figure CN105646285AD00061

The route salicylaldehyde as raw material, the final seven-step synthesis intermediates, but the reaction step, 2-bromo-1- (2,2-dimethyl -4H-1,3- benzodioxin en-6-yl) ethanone di-t-butyl imine and a dicarboxylic acid, a lower yield, only 58%; while the imine dicarboxylate and cesium carbonate expensive, more cost high; the next step and also acidolysis out a tert-butoxycarbonyl group, relatively low utilization atoms.

Synthetic Route [0046] The reaction is as follows:

[0047]

Figure CN105646285AD00091

Preparation of 5- (2-bromoacetyl) -2-hydroxyphenyl 4-carbaldehyde: [0048] Example 1

[0049] Under nitrogen, the ice bath, the aluminum trichloride 164g (5eq) dispersed into 600mL (20-fold amount) in DCM was slowly added dropwise bromoacetyl bromide 99. 4g (2eq), 20min After completion of the dropwise addition, the temperature warmed to room temperature, the reaction LH, salicylaldehyde to this mixture was added dropwise 30g, 20min dropwise addition, dropwise, the reaction overnight at 35 ° C. To the reaction mixture was added ice-water, the organic layer was separated, washed with water, dried and concentrated to dryness in vacuo.With DCM and recrystallized from n-hexane, the product was filtered to give 36. 5g, about 61% yield. 4 bandit 1 (4001 hold, 0)? (: 13): Sll.52 (s, lH), 9.99 (s, lH), 8.30 (s, lH), 8.17 (d, lH, J = 8Hz), 7.10 (d, lH, J = 8Hz), 4.39 (s, 2H); MS (-ESI) m / z 240 [MH]

– 5 -phenyl-1-one Preparation of 2-bromo-1- [4-hydroxy-3- (hydroxymethyl): [0050] Example 2

[0051] 40. 0g of the compound 4 dissolved in 400mL of acetic acid (10 times the amount), under ice-cooling, sodium borohydride was added portionwise 6. 8g (1. leq), was added stirred at rt for lh, TLC showed the reaction complete.Concentrated in vacuo to remove most of acetic acid, diluted with water and neutralized with sodium bicarbonate, extracted with EA, the organic phase washed with water and brine, dried over anhydrous sodium sulfate, and concentrated in vacuo to crude off-white powder did. After laundering refluxed with DCM to give a white powder 32g, 80% yield.

[0052] ^ NMR (400MHz, DMS0-d6): δ 10. 53 (s, 1H), 7. 99 (s, 1H), 7. 79 (d, 1H, J = 8Hz), 6.87 (d, lH , J = 8Hz), 4.75 (s, 2H), 4.50 (s, 2H); MS (+ ESI) m / z 267 [m + Na] +

[0053] Example 3: 2-amino-1- [4-hydroxy-3- (hydroxymethyl) – phenyl-1-one hydrochloride (6)

[0054] 10. 0g of the compound 5 was added to 200mL of ethyl acetate, was added hexamethylenetetramine (1. leq) 6. 2g, room temperature lh, TLC showed complete reaction. After filtration the filter cake was dried in vacuo as a white powder 15. 6g.The above white powder was dissolved in 150mL of ethanol, concentrated hydrochloric acid (5eq) 17. 5mL, room temperature overnight, the reaction was concentrated to dryness in vacuo to give an off-white powder 16. 0g (mixture) administered directly in the next step.

[0055] ^ NMR (400MHz, DMS0-d6): δ 10. 89 (s, 1H), 8. 40 (s, 2H), 7. 98 (d, 1H, J = 2Hz), 7 · 70 (dd , 1H, J = 8Hz and 2Hz), 7 · 02 (d, 1H, J = 8Hz), 4 · 49 (s, 2H), 4 · 43 (s, 2H); MS (+ ESI) m / z 182 [M + H] +

Preparation of 2- (3-hydroxymethyl-4-hydroxyphenyl) -2-carbonyl-ethyl carbamate ⑵ of: [0056] Example 4

[0057] The product from the previous step, compound 6 (hydrochloride) 16. 0g added to 150mL of THF and 150mL water was added 20. 6gNaHC03 (5eq), dissolved 30mL THF was added dropwise to a solution of 9. 8g Boc20, 20min After dropping. Reaction at room temperature lh, TLC showed complete reaction. Water was added, extracted with EA, the organic phase was washed successively with water and brine, dried over anhydrous sodium sulfate, and concentrated in vacuo to a crude solid powder did, then after 1-2 times the amount of reflux in DCM starched white powder 8. 7g, two step yield 76%.

[0058] ^ NMRQOOMHz, DMS0-d6):.. Δ 10. 35 (dr, 1H), 7 94 (s, 1H), 7 75 (d, 1H, J = 8Hz), 6 · 95 (t, 1H , J = 4Hz), 6 · 85 (t, 1H, J = 8Hz), 4 · 49 (s, 2H), 4 · 35 (d, 1H, J = 4Hz), L 39 (s, 9H); MS (ES +) m / z 304 [m + Na] +

[0059] Example 5: 2- (2,2-dimethyl -4H-1,3- benzodioxin-6-yl) -2-carbonyl-ethyl carbamate (7 ) preparation of

[0060] 7. 0g of the compound 2 was dissolved in 70mL of DCM (10-fold amount) was added a catalytic amount of p-toluenesulfonic acid (0. 05eq), was added dropwise 2-dimethoxyethane at reflux propane (2eq) was dissolved in 2-fold amount of DCM, 40min addition was complete, the reaction lh, TLC showed complete reaction. The reaction mixture was washed with saturated NaHC (V Sin three times, the organic phase was dried over anhydrous sodium sulfate, and concentrated in vacuo to give a yellow oil. Of isopropyl ether and recrystallized from n-heptane to obtain a white powder 6. 7g, 83% yield.

[0061] iHNMRGOOMHz, CDC13):. Δ 7. 77 (dd, 1H, J = 8Hz and 2Hz), 7 65 (s, 1H), 6 86 (d, 1H, J = 8Hz), 5 51 (.. dr, 1H), 4 87 (s, 2H), 4 56 (d, 2H, J = 4Hz), 1 56 (s, 6H), 1 47 (s, 9H);…. MS (ES +) m / z 344 [M + Na] +

[0062] Example 6: (2R) -2- (2, 2- dimethyl -4H-1,3- benzodioxin-6-yl) -2-hydroxyethyl carbamate butyl ester (8)

[0063] The catalyst was added 0. 78mL to 10mL of anhydrous THF under nitrogen was added dropwise BH3 ice bath. THF, 20min addition was complete. Was added dropwise under ice-cooling 2. 5g of compound 7 was dissolved in 20mL of anhydrous THF, 50min dropwise addition, reaction was warmed to room temperature 0. 5h, TLC indicated complete reaction. After quenched with methanol under ice-cooling the reaction, the reaction solution was concentrated in vacuo, water was added, extracted with EA, the organic phase washed with water and brine, dried over anhydrous sodium sulfate, and concentrated in vacuo to give a pale yellow oil 2. 8g. After petroleum ether starched white powder 2. 2g, 88% yield.

[0064] iHNMRGOOMHz, CDC13):… Δ 7. 13 (dd, 1H, J = 8Hz and 2Hz), 6 99 (s, 1H), 6 79 (d, 1H, J = 8Hz), 4 92 ( dr, 1H), 4. 71-4. 74 (m, 1H), 3. 42 (d, 1H, J = 12Hz), 3. 20-3. 25 (m, 1H), 1.53 (s, 6H) , 1.44 (s, 9H); MS (+ ESI) m / z 346 [m + Na] +

[0065] Example 7: (5R) -5- (2, 2- dimethyl -4H-1,3- benzodioxin-6-yl) -1, 3 oxazolidin -2 – preparation of ⑴ -one

[0066] Under nitrogen, 8 dissolved in 15mL of DMF 1. 8g compound, at 10-15 ° C, potassium tert-butoxide was added 0. 7g (l. Leq), After completion of the reaction at room temperature lh, TLC the reaction was complete. Ice water was added, a white solid was precipitated, stirring at room temperature after 3h, filtered off with suction, the filter cake was dried to obtain a white powder l.Og, 72% yield (purity 99.6%, ee 99.2%).

[0067] iHNMRGOOMHz, CDC13): δ 7. 15 (dd, 1H, J = 8Hz and 4Hz), 7 · 02 (s, 1H), 6 · 83 (d, 1H, J = 8Hz), 6.09 (br, lH), 5.52 (t, lH, J = 8Hz), 4.84 (s, 2H), 3.92 (t, lH, J = 8Hz), 3.53 (t, lH, J = 8Hz), 1.53 (s, 6H); MS (+ ESI) m / z 250 [m + H] +.

PATENT

https://patents.google.com/patent/WO2017001907A1/en

onverting the formed alcohol, preferably Compound II, to Vilanterol trifenatate, according to the below scheme:

Figure imgf000013_0001
Figure imgf000013_0002

timarate

Figure imgf000013_0003

VII L-tait rate

Figure imgf000013_0004
Figure imgf000013_0005

Example 16: Vilanterol base

Compound VII (5 g, obtained by procedure in Example 10) was dissolved in 5 EtOH (50 mL), followed by addition of 1M HCI solution (50 mL). The mixture was

stirred at room temp, for 90 minutes. Afterwards, pH of the mixture was adjusted to

~9 by addition of 20 % K2C03 solution (25 mL). The mixture was then extracted to dichloromethane (100 mL). Organic phase was washed with water (2 x 25 mL), dried over MgS04 and evaporated to dryness. The residue was purified by column 10 chromatography, elution with mixture of dichloromethane/ethanol/ammonia (50/8/1 ) to give title compound as brownish slightly yellowish oil .

Example 17: Vilanterol trifenatate

Vilanterol base (0.620 g) was dissolved in EtOH (6 mL). Triphenylacetic acid

(0.370 g) was added and the mixture was heated to 50° C and stirred at the same 15 temp, for 15 min. The mixture was then cooled to room temp., followed by cooling in ice-water bath for 90 minutes. The formed suspension was filtered, the filtration cake was washed with cold EtOH and dried at room temp, overnight.

Example 18: Preparation of Vilanterol base 20

( l/ )-2-[(6-{2-[(2,6-dichlorobenzyl)oxy]ethoxy}hexyl)amino]-l-(2,2-dimethyl- 4H-l,3-benzodioxin-6-yl)ethanol (15.5 g, obtained according to the procedure in US

2005/0075394, Example 77(iv)) was dissolved in EtOH (50 mL), followed by addition of 1M HCI solution (50 mL). The mixture was stirred at room temperature for 90 minutes.

Afterwards, the pH of the mixture was adjusted to ~9 by addition of 20 % K2C03 25 solution (25 mL). The mixture was then extracted to dichloromethane ( 100 mL). The organic phase was washed with water (2 x 25 mL), dried over MgS04 and evaporated to dryness.

The crude vilanterol base ( 14.5 g, 90.9 % purity) was dissolved in

dichloromethane and the solution was loaded on a column packed with 300 g Diol-silica 30 in dichloromethane. The column was eluted with dichloromethane with gradient of ethanol (2 – 20 %) . The chromatographic fractions were monitored by TLC. The

fractions containing relatively pure vilanterol were joined and evaporated to dryness, obtaining 11.0 g of vilanterol with purity 97.1 %.

Example 21: Preparation of Vilanterol L-tartrate

EtOH (700 mL) was mixed with 1 M aq. HCI acid (700 mL), the formed mixture 25 was cooled to 5 °C, followed by addition of compound VII L-tartrate ( 100 g, obtained by procedure in Example 15). The mixture was stirred at 5 °C for 15 hours. Afterwards, DCM (500 mL) was added, the mixture was cooled to 0 °C and aq. Solution of K2C03 ( 130g of K2C03 in 200 mL of water) was then added drop wise to the stirred reaction mixture until pH 9 – 9.5 was obtained. Temp, during the addition was kept below 5 °C. 30 The water phase was separated, and extracted with additional DCM (300 mL).

Combined organic extracts were warmed to temp. 20-25 °C and washed with water (2 x 500 mL), 1% brine (500 mL) and 24% brine (500 mL). Afterwards, organic extract was mixed with solution of L-Tartaric acid (26.6 g) in EtOH (210 mL). The mixture was stirred for 10 min. at temp. 20-25°C and then heated by setting the temp, of the 35 reactor jacket to 40°C. All DCM solvent was distilled off under vacuum to residual approximate 350 mL. The mixture was then cooled to 25°C, followed by addition of

EtOAc ( 1.5 L) . The mixture was stirred at 20-25 °C for 1 hour then cooled to -5 °C and stirred overnight. The product was separated by filtration, washed with cold EtOAc and dried under inert gas and room temp. Isolated yield 85%, chemical purity 99.8%, 5 optical purity 99.93%. The sample was analyzed by PXRD, the PXRD pattern is

presented in Figure 5.

Example 22: Preparation of Vilanterol trifenatate

Dichloromethane (256 mL) was mixed with water (256 mL), the formed mixture was cooled to 0 °C, followed by addition of Vilanterol L-tartrate (32 g, obtained by 10 procedure in Example 21 ) and EtOH (64 mL). Afterwards, 25% aq. solution of ammonia (34 mL) was then added drop wise to the stirred mixture. Temp, during the addition was kept below 5 °C. The water phase was separated, and extracted with additional

DCM (128 mL) . Combined organic extracts were warmed to temp. 20-25 °C mixed with MTBE (220 mL), EtOH (64 mL). The obtained mixture was then washed with water (3 x 15 220 mL). Afterwards, the obtained organic extract was mixed with triphenylacetic acid ( 14.5 g) and stirred until complete dissolution at temp. 20-25°C. Then EtOH (96 mL) was added and the mixture was heated by setting the temp, of the reactor jacket to

40°C. Part of DCM solvent was distilled off under vacuum to residual approximate volume 220 mL, The mixture was then cooled to 25°C, followed by addition of MTBE 20 (256 mL). The mixture was stirred at 20-25 °C for 1 hour then cooled to -5 °C and for additional 2 hours. The product was separated by filtration, washed with cold MTBE and dried under inert gas and room temp. Isolated yield 93%, chemical purity 99.8%, optical purity 99.93%.

CN102480971A *2009-09-042012-05-30葛兰素史密丝克莱恩有限责任公司Chemical compounds
WO2013183656A1 *2012-06-042013-12-12大日本住友製薬株式会社Conjugate of g-protein coupled receptor binding ligand and nucleic acid molecule
WO2014041565A2 *2012-09-132014-03-20Laurus Labs Private LimitedAn improved process for the preparation of vilanterol and intermediates thereof
CN103923058A *2014-05-062014-07-16上海鼎雅药物化学科技有限公司Method for synthesizing vilanterol intermediate and salt thereof
CN105646285A *2014-12-022016-06-08上海医药工业研究院Vilanterol intermediate, preparation method and application thereof
WO2017001907A12015-06-292017-01-05Teva Pharmaceuticals International Gmbh

References

  1. Harrell AW, Siederer SK, Bal J, Patel NH, Young GC, Felgate CC, Pearce SJ, Roberts AD, Beaumont C, Emmons AJ, Pereira AI, Kempsford RD: Metabolism and disposition of vilanterol, a long-acting beta(2)-adrenoceptor agonist for inhalation use in humans. Drug Metab Dispos. 2013 Jan;41(1):89-100. doi: 10.1124/dmd.112.048603. Epub 2012 Oct 4. [PubMed:23043183]
  2. Spyratos D, Sichletidis L: Umeclidinium bromide/vilanterol combination in the treatment of chronic obstructive pulmonary disease: a review. Ther Clin Risk Manag. 2015 Mar 25;11:481-7. doi: 10.2147/TCRM.S67491. eCollection 2015. [PubMed:25848294]
 
Patent ID Title Submitted Date Granted Date
US2012309725 COMBINATIONS OF A MUSCARINIC RECEPTOR ANTAGONIST AND A BETA-2 ADRENORECEPTOR AGONIST
2010-11-29
2012-12-06
US2014116434 Dry Powder Inhaler Compositions
2012-06-01
2014-05-01
US2013157991 Dry Powder Inhalation Drug Products Exhibiting Moisture Control Properties and Methods of Administering the Same
2011-08-31
2013-06-20
US2017189424 FLUTICASONE FUROATE IN THE TREATMENT OF COPD
2015-05-27
US9763965 AGGREGATE PARTICLES
2013-04-11
2015-03-26
Patent ID Title Submitted Date Granted Date
US8309572 Muscarinic acetylcholine receptor antagonists
2012-02-22
2012-11-13
US8534281 Manifold for use in medicament dispenser
2006-12-11
2013-09-17
US8161968 Medicament dispenser
2004-07-21
2012-04-24
US8511304 Medicament dispenser
2003-01-22
2013-08-20
US2011319371 PHARMACEUTICAL FORMULATIONS COMPRISING 4-HEXYL)AMINO]-1-HYDROXYETHYL}-2-(HYDROXYMETHYL)PHENOL
2011-12-29
Patent ID Title Submitted Date Granted Date
US6878698 Anti-inflammatory androstane derivatives
2003-05-15
2005-04-12
US6537983 Anti-inflammatory androstane derivatives
2003-03-06
2003-03-25
US7488827 Muscarinic Acetylcholine Receptor Antagonists
2007-10-25
2009-02-10
US6759398 Anti-inflammatory androstane derivative
2002-11-28
2004-07-06
US9750726 COMBINATIONS OF A MUSCARINIC RECEPTOR ANTAGONIST AND A BETA-2 ADRENORECEPTOR AGONIST
2015-12-16
2016-04-07
Patent ID Title Submitted Date Granted Date
US8183257 Muscarinic Acetylcholine Receptor Antagonists
2009-05-14
2012-05-22
US7776895 Inhalation devices for delivering phenethanolamine derivatives for the treatment of respiratory diseases
2009-03-12
2010-08-17
US7439393 Phenethanolamine Derivatives for Treatment of Respiratory Diseases
2008-01-03
2008-10-21
US7498440 Muscarinic acetylcholine receptor antagonists
2007-08-09
2009-03-03
US7629335 Anti-inflammatory androstane derivative
2007-02-01
2009-12-08

/////////////Vilanterol trifenatate, HY-14300ACS-1679, fda 2013, Breo Ellipta,  Relvar Ellipta, 444 , 642444 , GSK-642444  , GW-642444  , GW-642444M , ビランテロール  , ビランテロールトリフェニル酢酸塩 , ビランテロールトリフェナテート

C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3)C(=O)O.C1=CC(=C(C(=C1)Cl)COCCOCCCCCCNCC(C2=CC(=C(C=C2)O)CO)O)Cl

Umeclidinium bromide, ウメクリジニウム臭化物

$
0
0

Umeclidinium bromide.svg

ChemSpider 2D Image | Umeclidinium bromide | C29H34BrNO2Umeclidinium bromide.png

Umeclidinium bromide

GSK-573719A, ウメクリジニウム臭化物

  • Molecular FormulaC29H34BrNO2
  • Average mass508.490 Da
1-[2-(Benzyloxy)ethyl]-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide
1-Azoniabicyclo[2.2.2]octane, 4-(hydroxydiphenylmethyl)-1-[2-(phenylmethoxy)ethyl]-, bromide (1:1)
diphenyl-[1-(2-phenylmethoxyethyl)-1-azoniabicyclo[2.2.2]octan-4-yl]methanol;bromide
7AN603V4JV
869113-09-7 [RN]
9551
GSK573719A; UNII-7AN603V4JV

Umeclidinium bromide (trade name Incruse Ellipta) is a long-acting muscarinic antagonist approved for the maintenance treatment of chronic obstructive pulmonary disease (COPD).[1] It is also approved for this indication in combination with vilanterol (as umeclidinium bromide/vilanterol).[2][3]

In the 2014, the drug was also approved in the E.U. and in the U.S. for the maintenance treatment to relieve symptoms in adult patients with chronic obstructive pulmonary disease (COPD). It was launched in the U.K. in October 2014 and in the U.S. in January 2015. In Japan, the product candidate was approved in 2015 as monotherapy for the maintenance bronchodilator treatment to relieve symptoms in adult patients with chronic obstructive pulmonary disease (COPD) and launched on October in the same year.

Image result for umeclidinium bromide synthesis

Umeclidinium bromide (Ellipta)
Umeclidinium bromide is a long-acting muscarinic acetylcholine antagonist developed by GlaxoSmithKline and approved by the US FDA at the end of 2013 for use in combination with vilanterol, a b2 agonist, for the treatment of chronic obstructive pulmonary disease.269 Due to umeclidinium’s poor oral bioavailability, the drug is administrated by inhalation as dry powder.269

The most likely scale preparation of the drug is described in Scheme .270
Commercially available ethyl isonipecotate (278) was alkylated with 1-bromo-2-chloroethane in the presence of K2CO3 in acetone to give ethyl 1-(2-chloroethyl)piperidine-4-carboxylate (279). This material was then treated with lithium diisopropylamine (LDA) in THF to affect a transannular substitution reaction resulting in the cyclized quinuclidine 280 in 96% yield.270 Excess of phenyllithium was added to ester 280 in THF starting at low temperature then gradually warming to room temperature to give tertiary alcohol 281 in 61% yield. Amine 281 was finally alkylated with benzyl 2-bromoethyl ether (282) in MeCN/CHCl3 at elevated temperatures
to afford umeclidinium bromide (XXXV) in 69% yield.

269. Tal-Singer, R.; Cahn, A.; Mehta, R.; Preece, A.; Crater, G.; Kelleher, D.;Pouliquen, I. J. Eur. J. Pharmacol. 2013, 701, 40.
270. Laine, D. I.; McCleland, B.; Thomas, S.; Neipp, C.; Underwood, B.; Dufour, J.;Widdowson, K. L.; Palovich, M. R.; Blaney, F. E.; Foley, J. J.; Webb, E. F.;Luttmann, M. A.; Burman, M.; Belmonte, K.; Salmon, M. J. Med. Chem. 2009, 52, 2493.

FDA

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/203975Orig1s000ChemR.pdf

1-[2-(benzyloxy)ethyl]-4-(hydroxydiphenylmethyl)-1-azoniabicyclo[2.2.2]octane bromide

PATENT

https://patents.google.com/patent/CN105461710A/en

umeclidinium bromide prepared patent US7439393, US RE44874, US 7488827, US 7498440, US7361787 and the like using phenyllithium prepared by reaction of intermediate 4 – [(diphenyl) hydroxymethyl] azabicyclo [2.2.2 ] octane.Specific methods: azabicyclo [2.2.2] octane-nucleophilic addition reaction with 4-carboxylate-fold amount of 2.02-2.5 phenyllithium occurs, the reaction temperature is controlled to -78 ° 0_15 ° C ο lithium Reagents expensive, difficult to store, use of harsh conditions, relatively high cost.

 Example 1

Phenyl magnesium chloride: Under nitrogen atmosphere to 55g (2.3mol) of metallic magnesium sandpaper lit with 3 L of tetrahydrofuran was added dropwise 215g (1.91mol) chlorobenzene, micro-thermal reaction proceeds, controlled dropping, the reaction was kept boiling, dropwise for about 1.5 hours, after the dropping was heated slightly under reflux for 30min. Cool reserve.

[0008] Example 2

Phenyl magnesium bromide: The under argon 50.4g (2.lmol) sandpaper lit magnesium metal with 4.2 liters of anhydrous ethyl ether was added a solution of 300g (1.91mol) of bromobenzene, was added an iodine initiator, electrical hair fever reaction proceeds, controlled dropping, the reaction was kept boiling, about 1.5 hours dropwise was added dropwise to a gentle reflux heated 30min. Cool reserve.

[0009] Example 3

Preparation of crude product: azabicyclo [2.2.2] octane-4-carboxylate (135g, 0.736mo 1) was dissolved in 3L of tetrahydrofuran, under nitrogen, was cooled to -5~0 ° C, was added dropwise 300g preparation of benzyl bromide Grignard reagent. After incubation -5~0 ° C stirred for 1 hour (progress of the reaction was monitored by TLC sample). Adding 50ml of water quenching. Liquid separation, the aqueous phase was extracted twice with 500ml of tetrahydrofuran, and the combined organic phases were washed with water, dried and filtered. The solvent was partially removed under reduced pressure, the balance maintaining approximately 1L, the residue was stirred overnight at 20 ° C crystallization.Filtered, washed (petroleum ether 2 X 200 ml), the filter cake was dried at 40 ° C in vacuo to give a yellowish white crystals 121.2 g, yield 54.2%.

[0010] Example 4

Preparation of crude product: azabicyclo [2.2.2] octane-4-carboxylate (18.3g, 0.lOmo 1) was dissolved in 3L of tetrahydrofuran, under nitrogen, was cooled to 0~5 ° C, was added dropwise 0.25 mol phenyl magnesium chloride. After incubation 0~5 ° C stirred for 1 hour (progress of the reaction was monitored by TLC sample) o quenched with 10ml of water was added. Liquid separation, the aqueous phase was extracted twice with 100ml of tetrahydrofuran, and the combined organic phases were washed with water, dried and filtered. The solvent was partially removed under reduced pressure, the balance maintaining approximately 50mL, the residue was stirred overnight at 20 ° C crystallization.Filtered, washed (petroleum ether 2X20 ml), the filter cake was dried at 40 ° C in vacuo to give a yellowish white crystals 14.63 g, yield 48.1%.

[0011] Example 5

Preparation of crude product: azabicyclo [2.2.2] octane-4-carboxylate (18.38,0.1011101) ^ 31 was dissolved in tetrahydrofuran, under nitrogen, was cooled to 5~15 ° C, was added dropwise 0.30 mol of benzene bromide. After incubation 5~15 ° C stirred for 1 hour (progress of the reaction was monitored by TLC sample) o quenched with 10ml of water was added. Liquid separation, the aqueous phase was extracted twice with 100ml of tetrahydrofuran, and the combined organic phases were washed with water, dried and filtered. The solvent was partially removed under reduced pressure, the balance maintaining approximately 50mL, the residue was stirred overnight at 20 ° C crystallization.Filtered, washed (petroleum ether 2 X 20 ml), the filter cake was dried at 40 ° C in vacuo to yield 13.80 g of yellow-white crystals, yield 47.1%.

[0012] Example 6

Umeclidinium bromide purification: 100g crude product was dissolved in 320ml of water to 80 ° C a mixture of 640ml of acetone, add 5g active carbon, and filtered.The filtrate was cooled to 25 ° C, for 1 hour. Within 1 to 2 hours and cooled to 0~5 ° C for 3 hours. The filter cake with chilled 1: 2 acetone – washed twice with water (2x20ml). The filter cake was dried in vacuo at 60 ° C to give white crystalline solid (92 g, yield 92%). Purity (HPLC normalization method) 99.25%.

[0013] Example 7

Umeclidinium bromide purification: 100g crude product was dissolved in 180ml water at 50 ° C a mixture of 360ml of acetone, add 5g active carbon, and filtered.The filtrate was ~ 2 hours to 25 ° C, for 1 hour. Within 1 to 2 hours cooled to 0 ° C and left overnight protection. The filter cake with chilled 1: 2 acetone – washed twice with water (2x20ml). The filter cake was dried at 60 ° C in vacuo to give fine (98.3 g, yield 98.3%). Purity (HPLC normalization method) 97.75%.

PATENT

https://patents.google.com/patent/WO2014027045A1

International Patent Publication Number WO 2005/104745 (Glaxo Group Limited), filed 27th April 2005, discloses muscarinic acetylcholine receptor antagonists. In particular, WO 2005/104745 discloses 4- [hydroxy(diphenyl)methyl]-l-{2-[(phenylmethyl)oxy]ethyl}-l-azoniabicyclo[2.2.2]octane bromide, of formula (I), and a process for the preparation of this compound (Example 84):

Figure imgf000002_0001

4-[Hydroxy(diphenyl)methyl]-l-{2-[(phenylmethyl)oxy]ethyl}-l-azoniabicyclo[2.2.2]octane bromide may also be referred to as umeclidinium bromide.

International Patent Publication Number WO 2011/029896 (Glaxo Group Limited), filed 10th September 2010, discloses an alternative preparation for an early intermediate, ethyl-l-azabicyclo[2.2.2] octane-4-carboxylate, in the multi-step synthesis of umeclidinium bromide.

There exists a need for an alternative process for the preparation of umeclidinium bromide. In particular, a process that offers advantages over those previously disclosed in WO 2005/104745 and WO 2011/029896 is desired. Advantages may include, but are not limited to, improvements in safety, control (i.e of final product form and physical characteristics), yield, operability, handling, scalability, and efficiency.

Summary of the Invention

The present invention provides, in a first aspect, a process for the preparation of umeclidinium bromide, which comprises: a) reacting ((2-bromoethoxy)methyl)benzene, of formula (II)

Figure imgf000003_0001

in a dipolar aprotic solvent with a boiling point greater than about 90°C or an alcohol with a boiling point greater than about 80°C; and optionally

b) re-crystallising the product of step (a).

The present invention is further directed to intermediates used in the preparation of the compound of formula (III), and hence of umeclidinium bromide. The process disclosed herein provides a number of advantages over prior art processes of WO 2005/104745 and WO 2011/029896.

PATENT

EP 3248970

FORM A B AND AMORPHOUS

https://patents.google.com/patent/EP3248970A1/en

The invention relates to novel solid forms of umeclidinium bromide (I), chemically 1-[2-(benzyloxy)ethyl]-4-(hydroxydiphenylmethyl)-1-azabicyclo[2.2.2]octane bromide. In particular, to its novel crystalline forms, identified as form A and form B, as well as to an amorphous form, and to their characterization by means of analytic methods. The invention further relates to methods of their preparation and their use for the preparation of umeclidinium bromide in the API quality.

Figure imgb0001

Umeclidinium bromide is indicated as an inhalation anticholinergic drug with an ultra-long-term effect in cooperating patients with the diagnosis of COPD (chronic obstructive pulmonary disease). COPD is defined as a preventable and treatable disease that is characterized by a persistent obstruction of air flow in the bronchi (bronchial obstruction), which usually progresses and is related to an intensified inflammatory response of the airways to harmful particles or gases. The main goal of the treatment of COPD is an improvement of the current control, i.e. elimination of symptoms, improvement of toleration of physical effort, improvement of the health condition and reduction of future risks, i.e. prevention and treatment of exacerbations, prevention of progression of the disease and mortality reduction

The structure of umeclidinium bromide, 1-[2-(benzyloxy)ethyl]-4-(hydroxydiphenylmethyl)-1-azabicyklo[2.2.2]octane bromide, is first mentioned in the general patent application WO2005009362 of 2003 .

Preparation of umeclidinium bromide is first disclosed in the patent EP 1 740 177B ( WO2005104745 ), where two methods (A and B) are mentioned, differing in the final processing and the product yield (method B included in Scheme 1). There, the last steps of the synthesis are described, the product being described by means of EI-MS, 1H NMR and elementary analysis. There is no information concerning the chemical purity or polymorphic form.

Figure imgb0002
Another preparation method of umeclidinium bromide is disclosed in the patent application WO 2014027045 , where three forms are also described (identified as forms 1 to 3), prepared using a method that is different from the procedure disclosed in the patent EP 1 740 177B .
    • Example 5

Preparation of the amorphous form of umeclidinium bromide

1-[2-(benzyloxy)ethyl]-4-(hydroxydiphenylmethyl)-1-azabicyclo[2.2.2]octane bromide (100 mg, 0.197 mmol, purity UPLC 98.89%) is dissolved at the temperature of 25°C in a water: tert-butanol mixture in the volume ratio of 6:4 (total 70 ml). The clear solution is freeze-dried (a bath with a mixture of dry ice and ethanol, -70°C) and lyophilized (vacuum: 1.8 Pa for 72 h). An amorphous form of umeclidinium bromide was obtained (100 mg). This amorphous form was confirmed with DSC and X-ray powder diffraction. The X-ray powder diffraction pattern is shown in Fig. 8 and the DSC record in Fig. 9.

PAPER

Synthetic Communications  An International Journal for Rapid Communication of Synthetic Organic Chemistry , Volume 48, 2018 – Issue 9, Convenient new synthesis of umeclidinium bromide

Pages 995-1000 | Received 05 Mar 2017, Accepted author version posted online: 10 Jul 2017, Published online: 10 Jul 2017

Umeclidinium bromide, a drug used for chronic obstructive pulmonary disease, is synthesized through a new intermediate of phenyl(quinuclidin-4-yl)methanone. This novel method with simple operation flow and cheap reagents, makes it suitable for scale up. The overall four-step process provides umeclidinium bromide in 29% yield and the purity up to 99.83%. The X-ray crystal structure of the drug molecule was first reported.

External links

References

  1. Jump up to:a b “Incruse Ellipta (umeclidinium inhalation powder) for Oral Inhalation Use. Full Prescribing Information” (PDF). GlaxoSmithKline, Research Triangle Park, NC 27709. Retrieved 22 February 2016.
  2. Jump up^ Feldman, GJ; Edin, A (2013). “The combination of umeclidinium bromide and vilanterol in the management of chronic obstructive pulmonary disease: Current evidence and future prospects”. Therapeutic advances in respiratory disease7 (6): 311–9. doi:10.1177/1753465813499789PMID 24004659.
  3. Jump up^ “FDA Approves Umeclidinium and Vilanterol Combo for COPD”. Medscape. December 18, 2013.
Umeclidinium bromide
Umeclidinium bromide.svg
Clinical data
Trade names Incruse Ellipta
Synonyms GSK573719A
License data
Pregnancy
category
  • US: C (Risk not ruled out)
Routes of
administration
Inhalation (DPI)
ATC code
Legal status
Legal status
  • US: ℞-only
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Protein binding ~89%[1]
Metabolism Hepatic (CYP2D6)
Elimination half-life 11 hours
Excretion Feces (58%) and urine(22%)
Identifiers
CAS Number
PubChem CID
ChemSpider
KEGG
ChEBI
ECHA InfoCard 100.166.375 Edit this at Wikidata
Chemical and physical data
Formula C29H34BrNO2
Molar mass 508.49 g/mol
3D model (JSmol)

//////////////Umeclidinium bromide, Incruse Ellipta, ウメクリジニウム臭化物 , GSK573719A,  UNII-7AN603V4JV, FDA 2014

C1C[N+]2(CCC1(CC2)C(C3=CC=CC=C3)(C4=CC=CC=C4)O)CCOCC5=CC=CC=C5.[Br-]

Synthesis

FDA Orange Book Patents: 1 of 15 (FDA Orange Book Patent ID)
Patent 9750726
Expiration Nov 29, 2030
Applicant GLAXOSMITHKLINE
Drug Application
  1. N203975 (Prescription Drug: ANORO ELLIPTA. Ingredients: UMECLIDINIUM BROMIDE
  2. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 2 of 15 (FDA Orange Book Patent ID)
Patent 6759398
Expiration Aug 3, 2021
Applicant GLAXOSMITHKLINE
Drug Application
  1. N209482 (Prescription Drug: TRELEGY ELLIPTA. Ingredients: FLUTICASONE FUROATE
  2. UMECLIDINIUM BROMIDE
  3. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 3 of 15 (FDA Orange Book Patent ID)
Patent 7439393
Expiration May 21, 2025
Applicant GLAXOSMITHKLINE
Drug Application
  1. N203975 (Prescription Drug: ANORO ELLIPTA. Ingredients: UMECLIDINIUM BROMIDE
  2. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 4 of 15 (FDA Orange Book Patent ID)
Patent 7629335
Expiration Aug 3, 2021
Applicant GLAXOSMITHKLINE
Drug Application
  1. N209482 (Prescription Drug: TRELEGY ELLIPTA. Ingredients: FLUTICASONE FUROATE
  2. UMECLIDINIUM BROMIDE
  3. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 5 of 15 (FDA Orange Book Patent ID)
Patent 7776895
Expiration Sep 11, 2022
Applicant GLAXOSMITHKLINE
Drug Application
  1. N209482 (Prescription Drug: TRELEGY ELLIPTA. Ingredients: FLUTICASONE FUROATE
  2. UMECLIDINIUM BROMIDE
  3. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 6 of 15 (FDA Orange Book Patent ID)
Patent 8161968
Expiration Feb 5, 2028
Applicant GLAXOSMITHKLINE
Drug Application
  1. N209482 (Prescription Drug: TRELEGY ELLIPTA. Ingredients: FLUTICASONE FUROATE
  2. UMECLIDINIUM BROMIDE
  3. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 7 of 15 (FDA Orange Book Patent ID)
Patent 8201556
Expiration Feb 5, 2029
Applicant GLAXO GRP ENGLAND
Drug Application N205382 (Prescription Drug: INCRUSE ELLIPTA . Ingredients: UMECLIDINIUM BROMIDE)
FDA Orange Book Patents: 8 of 15 (FDA Orange Book Patent ID)
Patent 6537983
Expiration Aug 3, 2021
Applicant GLAXOSMITHKLINE
Drug Application
  1. N209482 (Prescription Drug: TRELEGY ELLIPTA. Ingredients: FLUTICASONE FUROATE
  2. UMECLIDINIUM BROMIDE
  3. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 9 of 15 (FDA Orange Book Patent ID)
Patent 7498440
Expiration Apr 27, 2025
Applicant GLAXOSMITHKLINE
Drug Application
  1. N209482 (Prescription Drug: TRELEGY ELLIPTA. Ingredients: FLUTICASONE FUROATE
  2. UMECLIDINIUM BROMIDE
  3. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 10 of 15 (FDA Orange Book Patent ID)
Patent 7488827
Expiration Dec 18, 2027
Applicant GLAXOSMITHKLINE
Drug Application
  1. N203975 (Prescription Drug: ANORO ELLIPTA. Ingredients: UMECLIDINIUM BROMIDE
  2. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 11 of 15 (FDA Orange Book Patent ID)
Patent 8183257
Expiration Jul 27, 2025
Applicant GLAXOSMITHKLINE
Drug Application
  1. N209482 (Prescription Drug: TRELEGY ELLIPTA. Ingredients: FLUTICASONE FUROATE
  2. UMECLIDINIUM BROMIDE
  3. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 12 of 15 (FDA Orange Book Patent ID)
Patent 6878698
Expiration Aug 3, 2021
Applicant GLAXOSMITHKLINE
Drug Application
  1. N209482 (Prescription Drug: TRELEGY ELLIPTA. Ingredients: FLUTICASONE FUROATE
  2. UMECLIDINIUM BROMIDE
  3. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 13 of 15 (FDA Orange Book Patent ID)
Patent 8511304
Expiration Jun 14, 2027
Applicant GLAXOSMITHKLINE
Drug Application
  1. N209482 (Prescription Drug: TRELEGY ELLIPTA. Ingredients: FLUTICASONE FUROATE
  2. UMECLIDINIUM BROMIDE
  3. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 14 of 15 (FDA Orange Book Patent ID)
Patent RE44874
Expiration Mar 23, 2023
Applicant GLAXOSMITHKLINE
Drug Application
  1. N209482 (Prescription Drug: TRELEGY ELLIPTA. Ingredients: FLUTICASONE FUROATE
  2. UMECLIDINIUM BROMIDE
  3. VILANTEROL TRIFENATATE)
FDA Orange Book Patents: 15 of 15 (FDA Orange Book Patent ID)
Patent 8309572
Expiration Apr 27, 2025
Applicant GLAXOSMITHKLINE
Drug Application
  1. N209482 (Prescription Drug: TRELEGY ELLIPTA. Ingredients: FLUTICASONE FUROATE
  2. UMECLIDINIUM BROMIDE
  3. VILANTEROL TRIFENATATE)

TAFENOQUINE タフェノキン

$
0
0

Tafenoquine(RS)-Tafenoquin Structural Formula V1.svg

ChemSpider 2D Image | Tafenoquine | C24H28F3N3O3

Tafenoquine

タフェノキン

N-[2,6-dimethoxy-4-methyl-5-[3-(trifluoromethyl)phenoxy]quinolin-8-yl]pentane-1,4-diamine

1,4-Pentanediamine, N4-[2,6-dimethoxy-4-methyl-5-[3-(trifluoromethyl)phenoxy]-8-quinolinyl]-
106635-80-7 [RN]
262P8GS9L9
7835
N4-{2,6-Dimethoxy-4-methyl-5-[3-(trifluormethyl)phenoxy]-8-chinolinyl}-1,4-pentandiamin
WR-238605, WR 238605, cas no 106635-80-7, Tafenoquine succinate, Etaquine, SB-252263, WR-238605
N(4)-(2,6-Dimethoxy-4-methyl-5-((3-trifluoromethyl)phenoxy)-8-quinolinyl)-1,4-pentanediamine
Molecular Formula: C24H28F3N3O3
Molecular Weight: 463.49263

Medicines for Malaria Venture
Walter Reed Army Institute (Originator)

PATENT  US 4617394

Synonyms

  • Etaquine[5]
  • WR 238605 [5]
  • SB-252263

New Drug Application (NDA): 210795
Company: GLAXOSMITHKLINE

FDA approved on July 20, 2018

FDA

Orphan

This new drug application provides for the use of KRINTAFEL (tafenoquine) tablets for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged 16 years and older who are receiving appropriate antimalarial therapy for acute P. vivax infection….https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2018/210795Orig1s000Ltr.pdf

Tafenoquine under the commercial name of Krintafel is an 8-aminoquinoline drug manufactured by GlaxoSmithKline that is being investigated as a potential treatment for malaria, as well as for malaria prevention.[2][3]

The proposed indication for tafenoquine is for treatment of the hypnozoite stages of Plasmodium vivax and Plasmodium ovale that are responsible for relapse of these malaria species even when the blood stages are successfully cleared. This is only now achieved by administration of daily primaquine for 14 days. The main advantage of tafenoquine is that it has a long half-life (2–3 weeks) and therefore a single treatment may be sufficient to clear hypnozoites. The shorter regimen has been described as an advantage.[4]

Like primaquine, tafenoquine causes hemolysis in people with G6PD deficiency.[2] Indeed, the long half-life of tafenoquine suggests that particular care should be taken to ensure that individuals with severe G6PD deficiency do not receive the drug.

The dose of tafenoquine has not been firmly established, but for the treatment of Plasmodium vivax malaria, a dose of 800 mg over three days has been used.[5]

Image result for TAFENOQUINE IR

In 2018 United States Food and Drug Administration (FDA) approved single dose tafenoquine for the radical cure (prevention of relapse) of Plasmodium vivax malaria[6].

Tafenoquine is used for the treatment and prevention of relapse of Vivax malaria in patients 16 years and older. Tafenoquine is not indicated to treat acute vivax malaria.[1]

Malaria is a disease that remains to occur in many tropical countries. Vivax malaria, caused by Plasmodium vivax, is known to be less virulent and seldom causes death. However, it causes a substantive illness-related burden in endemic areas and it is known to present dormant forms in the hepatocytes named hypnozoites which can remain dormant for weeks or even months. This dormant form produces ongoing relapses

FDA Approves Tafenoquine, First New P VivaxMalaria Treatment in 60 Years

JUL 23, 2018

The US Food and Drug Administration (FDA) has approved, under Priority Review, GlaxoSmithKline (GSK)’s tafenoquine (Krintafel), which is the first single-dose medicine for the prevention of  Plasmodium vivax (P vivax) malaria relapse in patients over the age of 16 years who are receiving antimalarial therapy. This is the first drug to be approved for the treatment of P vivax in over 60 years.

“[The] approval of Krintafel, the first new treatment for Plasmodium vivax malaria in over 60 years, is a significant milestone for people living with this type of relapsing malaria.” Hal Barron, MD, chief scientific officer and president of research and development of  GSK, said in the announcement, “Together with our partner, Medicines for Malaria Venture (MMV), we believe Krintafel will be an important medicine for patients with malaria and contribute to the ongoing effort to eradicate this disease.”

Tafenoquine is an 8-aminoquinoline derivative with activity against all stages of the P vivax lifecycle, including hypnozoites. It was first synthesized by scientists at the Walter Reed Army Institute of Research in 1978, and in 2008, GSK entered into a collaboration with MMV, to develop tafenoquine as an anti-relapse medicine.

After an infected mosquito bite, the P vivax parasite infects the blood and causes an acute malaria episode and can also lie dormant in the liver (in a form known as hypnozoite) from where it periodically reactivates to cause relapses, which can occur weeks, months, or years after the onset of the initial infection. The dormant liver forms cannot be readily treated with most anti-malarial treatments. Primaquine, an 8-aminoquinolone, has been the only FDA-approved medicine that targeted the dormant liver stage to prevent relapse; however, effectiveness only occurs after 14 days and the treatment has shown to have poor compliance.

“The US FDA’s approval of Krintafel is a major milestone and a significant contribution towards global efforts to eradicate malaria,” commented David Reddy, PhD, chief executive officer of MMV in a recent statement, “The world has waited decades for a new medicine to counter P vivax malaria relapse. Today, we can say the wait is over. Moreover, as the first ever single-dose for this indication, Krintafel will help improve patient compliance.”

Approval for tafenoquine was granted based on the efficacy and safety data gleaned from a comprehensive global clinical development program for P vivaxprevention of relapse which has been designed by GSK and MMV in agreement with the FDA. The program consisted of 13 studies assessing the safety of a 300 mg single-dose of tafenoquine, including 3 double-blind studies referred to as DETECTIVE Parts 1 and 2 and GATHER.

With the approval of tafenoquine, GSK has also been awarded a tropical disease priority review voucher by the FDA. Additionally, GSK is waiting for a decision from Australian Therapeutics Good Administration regarding the regulatory submission for the drug.

P vivax malaria has caused around 8.5 million clinical infections each year, primarily in South Asia, South-East Asia, Latin America, and the Horn of Africa, a peninsula in East Africa. Symptoms include fever, chills, vomiting, malaise, headache and muscle pain, and can lead to death in severe cases.

Tafenoquine should not be administered to: patients who have glucose-6-phosphate dehydrogenase (G6PD) deficiency or have not been tested for G6PD deficiency, patients who are breastfeeding a child known to have G6PD deficiency or one that has not been tested for G6PD deficiency, or patients who are allergic to tafenoquine or any of the ingredients in tafenoquine or who have had an allergic reaction to similar medicines containing 8-aminoquinolines

Stereochemistry

Tafenoquine contains a stereocenter and consists of two enantiomers. This is a mixture of (R) – and the (S) – Form:

Enantiomers of tafenoquine
(R)-Tafenoquin Structural Formula V1.svg
(R)-Form
(S)-Tafenoquin Structural Formula V1.svg
(S)-Form

CLIP

US 4431807

Nitration of 1,2-dimethoxybenzene (XXIX) with HNO3/AcOH gives 4,5-dimethoxy-1,2-dinitrobenzene (XXX), which is treated with ammonia in hot methanol to yield 4,5-dimethoxy-2-nitroaniline (XXXI). Cyclization of compound (XXXI) with buten-2-one (XXXII) by means of H3PO4 and H3AsO4 affords 5,6-dimethoxy-4-methyl-8-nitroquinoline (XXXIII), which is selectively mono-demethylated by means of HCl in ethanol to provide 5-hydroxy-6-methoxy-4-methyl-8-nitroquinoline (XXXIV). Reaction of quinoline (XXXIV) with POCl3 gives the corresponding 5-chloro derivative (XXXV), which is condensed with 3-(trifluoromethyl)phenol (IV) by means of KOH to yield the diaryl ether (XXXVI). Finally, the nitro group of (XXXVI) is reduced by means of H2 over PtO2 in THF or H2 over Raney nickel.

Nitration of 2-fluoroanisole (XXXVII) with HNO3/Ac2O gives 3-fluoro-4-methoxynitrobenzene (XXXVIII), which is reduced to the corresponding aniline (XXXIX) with SnCl2/HCl. Reaction of compound (XXXIX) with Ac2O yields the acetanilide (XL), which is nitrated with HNO3 to afford 5-fluoro-4-methoxy-2-nitroacetanilide (XLI). Hydrolysis of (XLI) with NaOH provides 5-fluoro-4-methoxy-2-nitroaniline (XLII), which is cyclized with buten-2-one (XXXII) by means of As2O5 and H3PO4 to furnish 5-fluoro-6-methoxy-4-methyl-8-nitroquinoline (XLIII). Condensation of quinoline (XLIII) with 3-(trifluoromethyl)phenol (IV) by means of K2CO3 gives the diaryl ether (XXXIV), which is finally reduced by means of H2 over PtO2 in THF.

CLIP

US 4617394

Reaction of 8-amino-6-methoxy-4-methyl-5-[3-(trifluoromethyl)phenoxy]quinoline (XIV) with phthalic anhydride (XV) affords the phthalimido derivative (XVI), which is oxidized with MCPBA to yield the quinoline N-oxide (XVII). Treatment of compound (XVII) with neutral alumina gives the quinolone derivative (XVIII), which by reaction with POCl3 in refluxing CHCl3 provides the 2-chloroquinoline derivative (XIX). Alternatively, reaction of the quinoline N-oxide (XVII) with POCl3 as before also gives the 2-chloroquinoline derivative (XIX) The removal of the phthalimido group of compound (XIX) by means of hydrazine in refluxing ethanol gives the chlorinated aminoquinoline (XX), which is finally treated with MeONa in hot DMF.

CLIP

US 6479660; WO 9713753

Chlorination of 6-methoxy-4-methylquinolin-2(1H)-one (I) with SO2Cl2 in hot acetic acid gives the 5-chloro derivative (II), which is nitrated with HNO3 in H2SO4 to yield the 8-nitroquinolinone (III). Condensation of compound (III) with 3-(trifluoromethyl)phenol (IV) by means of KOH in NMP provides the diaryl ether (V), which is treated with refluxing POCl3 to afford the 2-chloroquinoline (VI). Reaction of compound (VI) with MeONa in refluxing methanol results in the 2,6-dimethoxyquinoline derivative (VII), which is reduced with hydrazine over Pd/C to give the 8-aminoquinoline derivative (VIII). Condensation of aminoquinoline (VIII) with N-(4-iodopentyl)phthalimide (IX) by means of diisopropylamine in hot NMP yields the phthalimido precursor (X), which is finally cleaved with hydrazine in refluxing ethanol.

Reaction of 1,4-dibromopentane (XI) with potassium phthalimide (XII) gives N-(4-bromopentyl)phthalimide (XIII), which is then treated with NaI in refluxing acetone.

Reaction of 4-methoxyaniline (XXI) with ethyl acetoacetate (XXII) by means of triethanolamine in refluxing xylene gives the acetoacetanilide (XXIII), which is cyclized by means of hot triethanolamine and H2SO4 to yield 6-methoxy-4-methylquinolin-2(1H)-one (I), which is treated with refluxing POCl3 to provide 2-chloro-6-methoxy-4-methylquinoline (XXIV). Reaction of compound (XXIV) with SO2Cl2 in hot AcOH affords 2,5-dichloro-6-methoxy-4-methylquinoline (XXV), which is treated with MeONa in refluxing methanol to furnish 5-chloro-2,6-dimethoxy-4-methylquinoline (XXVI). Alternatively, the reaction of compound (XXIV) with MeONa as before gives 2,6-dimethoxy-4-methylquinoline (XXVII), which is treated with SO2Cl2 in hot AcOH to give the already described 5-chloro-2,6-dimethoxy-4-methylquinoline (XXVI). Nitration of compound (XXVI) with KNO3 and P2O5 gives the 8-nitroquinoline derivative (XXVIII), which is condensed with 3-(trifluoromethyl)phenol (IV) by means of KOH in hot NMP to yield the diaryl ether (VII). Finally, the nitro group of compound (VII) is reduced with hydrazine over Pd/C.

PAPER

http://pubs.rsc.org/en/Content/ArticleLanding/2017/RA/C7RA04867J#!divAbstract

An antimalarial drug, tafenoquine, as a fluorescent receptor for ratiometric detection of hypochlorite

 Author affiliations

Abstract

Tafenoquine (TQ), a fluorescent antimalarial drug, was used as a receptor for the fluorometric detection of hypochlorite (OCl). TQ itself exhibits a strong fluorescence at 476 nm, but OCl-selective cyclization of its pentan-1,4-diamine moiety creates a blue-shifted fluorescence at 361 nm. This ratiometric response facilitates rapid, selective, and sensitive detection of OCl in aqueous media with physiological pH. This response is also applicable to a simple test kit analysis and allows fluorometric OCl imaging in living cells.

Graphical abstract: An antimalarial drug, tafenoquine, as a fluorescent receptor for ratiometric detection of hypochlorite

1 H NMR (300 MHz, CDCl3, TMS) d (ppm): 7.32 (q, 1H, J ¼ 18 Hz), 7.21 (d, 1H, J ¼ 6 Hz), 7.07 (s, 1H), 6.94 (d, 1H, J ¼ 6 Hz), 6.64 (s, 1H), 6.50 (s, 1H), 5.84 (d, 1H, J ¼ 6 Hz), 4.00 (s, 3H), 3.79 (s, 3H), 3.66 (s, 1H), 2.78 (d, 2H, J ¼ 6 Hz), 2.55 (s, 3H), 1.69 (dd, 6H, J ¼ 6 Hz, J ¼ 9 Hz), 1.35 (d, 3H, J ¼ 6 Hz).

13C NMR (100 MHz, CDCl3, TMS) d (ppm): 159.64, 148.961, 146.339, 142.010, 132.085, 131.760, 131.007, 129.968, 126.917, 125.344, 122.636, 120.681, 118.006, 115.256, 112.052, 94.996, 56.989, 52.870, 48.446, 42.248, 34.439, 30.130, 23.103, 20.833.

MS (m/z): M+ calcd for C24H28F3N3O3: 463.2083; found (ESI): 464.17 (M + H)+ .

PAPER

J Med Chem 1989,32(8),1728-32

https://pubs.acs.org/doi/pdf/10.1021/jm00128a010

Synthesis of the intermediate diazepinone (IV) is accomplished by a one-pot synthesis. Condensation of 2-chloro-3-aminopyridine (I) with the anthranilic ester (II) is effected in the presence of potassium tert-butoxide as a catalyst. The resulting anthranilic amide (III) is cyclized under the influence of catalytic amounts of sulfuric acid. Treatment of (IV) with chloroacetylchloride in toluene yields the corresponding choroacetamide (V). The side chain of AQ-RA 741 is prepared starting from 4-picoline, which is alkylated by reaction with 3-(diethylamino)propylchloride in the presence of n-butyllithium. Hydrogenation of (VIII) using platinum dioxide as a catalyst furnishes the diamine (IX), which is coupled with (V) in the presence of catalytic amounts of sodium iodide in acetone leading to AQ-RA 741 as its free base.

Image result for tafenoquine DRUG FUTURE

Image result for tafenoquine DRUG FUTURE

CLIP

Image result for TAFENOQUINE IR

Image result for TAFENOQUINE IR

References

  1. Jump up to:a b Peters W (1999). “The evolution of tafenoquine–antimalarial for a new millennium?”J R Soc Med92 (7): 345–352. PMC 1297286Freely accessiblePMID 10615272.
  2. Jump up to:a b Shanks GD, Oloo AJ, Aleman GM, et al. (2001). “A New Primaquine Analogue, Tafenoquine (WR 238605), for prophylaxis against Plasmodium falciparum malaria”. Clin Infect Dis33 (12): 1968–74. doi:10.1086/324081JSTOR 4482936PMID 11700577.
  3. Jump up^ Lell B, Faucher JF, Missinou MA, et al. (2000). “Malaria chemoprophylaxis with tafenoquine: a randomised study”. Lancet355 (9220): 2041–5. doi:10.1016/S0140-6736(00)02352-7PMID 10885356.
  4. Jump up^ Elmes NJ, Nasveld PE, Kitchener SJ, Kocisko DA, Edstein MD (November 2008). “The efficacy and tolerability of three different regimens of tafenoquine versus primaquine for post-exposure prophylaxis of Plasmodium vivax malaria in the Southwest Pacific”Transactions of the Royal Society of Tropical Medicine and Hygiene102 (11): 1095–101. doi:10.1016/j.trstmh.2008.04.024PMID 18541280.
  5. Jump up^ Nasveld P, Kitchener S (2005). “Treatment of acute vivax malaria with tafenoquine”. Trans R Soc Trop Med Hyg99 (1): 2–5. doi:10.1016/j.trstmh.2004.01.013PMID 15550254.
  6. Jump up^ “Drugs@FDA: FDA Approved Drug Products”http://www.accessdata.fda.gov. Retrieved 2018-07-23.
  1.  Shanks GD, Oloo AJ, Aleman GM et al. (2001). “A New Primaquine Analogue, Tafenoquine (WR 238605), for prophylaxis against Plasmodium falciparum malaria”. Clin Infect Dis 33 (12): 1968–74. doi:10.1086/324081JSTOR 4482936.PMID 11700577.
  2. Lell B, Faucher JF, Missinou MA et al. (2000). “Malaria chemoprophylaxis with tafenoquine: a randomised study”.Lancet 355 (9220): 2041–5. doi:10.1016/S0140-6736(00)02352-7PMID 10885356.
  3.  Elmes NJ, Nasveld PE, Kitchener SJ, Kocisko DA, Edstein MD (November 2008). “The efficacy and tolerability of three different regimens of tafenoquine versus primaquine for post-exposure prophylaxis of Plasmodium vivax malaria in the Southwest Pacific”Transactions of the Royal Society of Tropical Medicine and Hygiene 102 (11): 1095–101.doi:10.1016/j.trstmh.2008.04.024PMID 18541280.
  4.  Nasvelda P, Kitchener S. (2005). “Treatment of acute vivax malaria with tafenoquine”. Trans R Soc Trop Med Hyg 99 (1): 2–5. doi:10.1016/j.trstmh.2004.01.013PMID 15550254.
  5.  Peters W (1999). “The evolution of tafenoquine–antimalarial for a new millennium?”. J R Soc Med 92 (7): 345–352.PMID 10615272.
  6. J Med Chem 1982,25(9),1094
8-3-2007
Methods and compositions for treating diseases associated with pathogenic proteins
12-6-2006
Process for the preparation of quinoline derivatives
3-14-2002
PROCESS FOR THE PREPARATION OF ANTI-MALARIAL DRUGS
4-2-1998
MULTIDENTATE METAL COMPLEXES AND METHODS OF MAKING AND USING THEREOF
4-18-1997
PROCESS FOR THE PREPARATION OF ANTI-MALARIAL DRUGS
12-20-1996
MULTIDENTATE METAL COMPLEXES AND METHODS OF MAKING AND USING THEREOF
12-15-1993
Use of interferon and a substance with an antimalarial activity for the treatment of malaria infections
10-15-1986
4-methyl-5-(unsubstituted and substituted phenoxy)-2,6-dimethoxy-8-(aminoalkylamino) quinolines
Title: Tafenoquine
CAS Registry Number: 106635-80-7
CAS Name: N4[2,6-Dimethoxy-4-methyl-5-[3-(trifluoromethyl)phenoxy]-8-quinolinyl]-1,4-pentanediamine
Additional Names: 8-[(4-amino-1-methylbutyl)amino]-2,6-dimethoxy-4-methyl-5-[3-(trifluoromethyl)phenoxy]quinoline
Manufacturers’ Codes: WR-238605
Molecular Formula: C24H28F3N3O3
Molecular Weight: 463.49
Percent Composition: C 62.19%, H 6.09%, F 12.30%, N 9.07%, O 10.36%
Literature References: Analog of primaquine, q.v. Prepn: P. Blumbergs, M. P. LaMontagne, US 4617394 (1986 to U.S. Sec. Army); M. P. LaMontagne et al., J. Med. Chem. 32, 1728 (1989). HPLC determn in blood and plasma: D. A. Kocisko et al., Ther. Drug Monit. 22, 184 (2000). Metabolism: O. R. Idowu et al., Drug Metab. Dispos. 23, 1 (1995). Clinical pharmacokinetics: M. D. Edstein et al., Br. J. Pharmacol. 52, 663 (2001). Clinical evaluation in prevention of malaria relapse: D. S. Walsh et al., J. Infect. Dis. 180, 1282 (1999); in malaria prophylaxis: B. Lell et al., Lancet 355, 2041 (2000); B. R. Hale et al., Clin. Infect. Dis. 36, 541 (2003).
Derivative Type: Succinate
CAS Registry Number: 106635-81-8
Trademarks: Etaquine (GSK)
Molecular Formula: C24H28F3N3O3.C4H6O4
Molecular Weight: 581.58
Percent Composition: C 57.83%, H 5.89%, F 9.80%, N 7.23%, O 19.26%
Properties: Crystals from acetonitrile, mp 146-149°. LD50 in male, female rats (mg/kg): 102, 71 i.p.; 429, 416 orally (LaMontagne).
Melting point: mp 146-149°
Toxicity data: LD50 in male, female rats (mg/kg): 102, 71 i.p.; 429, 416 orally (LaMontagne)
Therap-Cat: Antimalarial.
Keywords: Antimalarial.
Tafenoquine
(RS)-Tafenoquin Structural Formula V1.svg
Clinical data
Synonyms Etaquine,[1] WR 238605,[1] SB-252263
ATC code
  • none
Identifiers
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
NIAID ChemDB
Chemical and physical data
Formula C24H28F3N3O3
Molar mass 463.493 g/mol
3D model (JSmol)

OLD CLIP

April 28, 2014
GlaxoSmithKline (GSK) and Medicines for Malaria Venture (MMV) announced the start of a Phase 3 global program to evaluate the efficacy and safety of tafenoquine, an investigational medicine which is being developed for the treatment and relapse prevention (radical cure) of Plasmodium vivax (P. vivax) malaria.

P. vivax malaria, a form of the disease caused by one of several species of Plasmodium parasites known to infect humans, occurs primarily in South and South East Asia, Latin America and the horn of Africa. Severe anemia, malnutrition and respiratory distress are among the most serious consequences described to be caused by the infection.

The Phase 3 program includes two randomized, double-blind treatment studies to investigate tafenoquine in adult patients with P. vivax malaria. The DETECTIVE study (TAF112582) aims to evaluate the efficacy, safety and tolerability of tafenoquine as a radical cure for P. vivax malaria, co-administered with chloroquine, a blood stage anti-malarial treatment. The GATHER study (TAF116564) aims to assess the incidence of hemolysis and safety and efficacy of tafenoquine compared to primaquine, the only approved treatment currently available for the radical cure of P. vivax malaria.

Tafenoquine is not yet approved or licensed for use anywhere in the world.

“P. vivax malaria can affect people of all ages and is particularly insidious because it has the potential to remain dormant within the body in excess of a year, and causes some patients to experience repeated episodes of illness after the first mosquito bite,” said Nicholas Cammack, head, Tres Cantos Medicines Development Center for Diseases of the Developing World.  “Our investigation of tafenoquine for the treatment of P. vivax malaria is part of GSK’s efforts to tackle the global burden of malaria. Working with our partners, including MMV, we are determined to stop malaria in all its forms.”

“One of the big challenges we face in tackling malaria is to have new medicines to prevent relapse, caused by dormant forms of P. vivax,” said Dr. Timothy Wells, MMV’s chief scientific officer. “The Phase 3 program is designed to build upon the promising results of the Phase 2b study which showed that treatment with tafenoquine prevented relapses. If successful, tafenoquine has the potential to become a major contributor to malaria elimination. It’s a great privilege to be working with GSK on this project; they have a clear commitment to changing the face of public health in the countries in which we are working.”

/////////////Tafenoquine, タフェノキン , Orphan, FDA 2018,  KRINTAFEL, Priority Review, GlaxoSmithKline
COC1=CC(C)=C2C(OC3=CC=CC(=C3)C(F)(F)F)=C(OC)C=C(NC(C)CCCN)C2=N1

Fostamatinib, фостаматиниб , وستاماتينيب , 福他替尼 , ホスタマチニブジナトリウム水和物

$
0
0

Fostamatinib.svgChemSpider 2D Image | Fostamatinib | C23H26FN6O9PFostamatinib.png

Fostamatinib

  • Molecular FormulaC23H26FN6O9P
  • Average mass580.459 Da
SQ8A3S5101
TAVALISSE [Trade name]
фостаматиниб [Russian] [INN]
فوستاماتينيب [Arabic] [INN]
福他替尼 [Chinese] [INN]
[6-({5-Fluoro-2-[(3,4,5-trimethoxyphenyl)amino]-4-pyrimidinyl}amino)-2,2-dimethyl-3-oxo-2,3-dihydro-4H-pyrido[3,2-b][1,4]oxazin-4-yl]methyl dihydrogen phosphate[ACD/IUPAC Name]
2H-Pyrido[3,2-b]-1,4-oxazin-3(4H)-one, 6-[[5-fluoro-2-[(3,4,5-trimethoxyphenyl)amino]-4-pyrimidinyl]amino]-2,2-dimethyl-4-[(phosphonooxy)methyl]-[ACD/Index Name]
901119-35-5[RN]
9022
Image result for fostamatinib disodium hexahydrateImage result for fostamatinib disodium hexahydrate

Fostamatinib disodium hexahydrate

ホスタマチニブジナトリウム水和物

INGREDIENT UNII CAS
Fostamatinib disodium 86EEZ49YVB 914295-16-2
Molecular Formula: C23H36FN6Na2O15P
Molecular Weight: 732.52 g/mol

TAVALISSE™
(fostamatinib disodium hexahydrate) Tablets, for Oral Use

DESCRIPTION

Fostamatinib is a tyrosine kinase inhibitor. TAVALISSE is formulated with the disodium hexahydrate salt of fostamatinib, a phosphate prodrug that converts to its pharmacologically active metabolite, R406, in vivo.

The chemical name for fostamatinib disodium hexahydrate is disodium (6-[[5-fluoro-2-(3,4,5trimethoxyanilino) pyrimidin-4-yl]amino]-2,2-dimethyl-3-oxo-pyrido[3,2-b][1,4]oxazin-4-yl)methyl phosphate hexahydrate. The molecular formula is C23H24FN6Na2O9P·6H2O, and the molecular weight is 732.52. The structural formula is:

TAVALISSE™ (fostamatinib disodium hexahydrate) Structural Formula Illustration

Fostamatinib disodium is a white to off-white powder that is practically insoluble in pH 1.2 aqueous buffer, slightly soluble in water, and soluble in methanol.

Each TAVALISSE oral tablet contains 100 mg or 150 mg fostamatinib, equivalent to 126.2 mg or 189.3 mg fostamatinib disodium hexahydrate, respectively.

The inactive ingredients in the tablet core are mannitol, sodium bicarbonate, sodium starch glycolate, povidone, and magnesium stearate. The inactive ingredients in the film coating are polyvinyl alcohol, titanium dioxide, polyethylene glycol 3350, talc, iron oxide yellow, and iron oxide red.

Image result for fostamatinib disodium hexahydrate

Fostamatinib, sold under the brand name Tavalisse, is a medication approved by the U.S. Food and Drug Administration since 2018 for the treatment of chronic immune thrombocytopenia (ITP). The drug is administered orally as a disodium hexahydrate salt, and is a prodrug of the active compound tamatinib (R-406),[1] which is an inhibitor of the enzyme spleen tyrosine kinase (Syk),[2] hence it is an syk inhibitor.

Fostamatinib has been investigated for the treatment and basic science of Rheumatoid Arthritis and Immune Thrombocytopenic Purpura (ITP). It was approved on April 17, 2018 under the trade name Tavalisse for use in ITP [8]. Fostamatinib has also been granted orphan drug status by the FDA [8].

Fostamatinib is indicated for use in the treatment of chronic immune thrombocytopenia (ITP) in patients who have had insufficient response to previous therapy [Label].

Syk is a protein tyrosine kinase associated with various inflammatory cells, including macrophages, which are presumed to be the cells responsible for ITP platelet clearance.[3] When FcγRs I, IIA, and IIIA bind to their ligands, the receptor complex becomes activated and triggers the phosphorylation of the immunoreceptor-activating motifs (ITAMs). This leads to various genes becoming activated, which causes a cytoskeletal rearrangement that mediates phagocytosis in cells of the monocyte/macrophage lineage. Because Syk plays an important role in FcγR-mediated signal transduction and inflammatory propagation, it is considered a good target for the inhibition of various autoimmune conditions, including rheumatoid arthritis and lymphoma.

Clinical trials

Fostamatinib has been in clinical trials for rheumatoid arthritisautoimmune thrombocytopeniaautoimmune hemolytic anemiaIgA nephropathy, and lymphoma.[1][4]

The investigation of fostamatinib began with studies involving the treatment of mouse models with cytopenia. Mice were used to measure the effectiveness of R788, a small molecule prodrug of the biologically active R406, a Syk inhibitor. In animal models, treatment with R406/R788 was shown to be safe and effective in reducing inflammation and joint damage in immune-mediated rheumatoid arthritis. The models responded favorably to treatment so the study progressed to Phase 2 trials involving humans. Human studies have shown that R788 has good oral bioavailability, biologic activity, is well tolerated, and does not exhibit collagen or ADP-induced platelet aggregation. In NCT00706342, 16 adults with chronic ITP were entered into an open-label, single-arm cohort dose-escalation trials beginning with 75 mg and rising to 175 mg twice a day. The dose was increased until a persistent response was evident, toxicity was reached, or 175 mg twice a day was met. 8 patients achieved persistent responses with platelet counts greater than 50,000 mm3/L on more than 67% of their visits. 3 of these patients had not persistently responded to thrombopoietic agents. 4 others had nonsustained responses. Mean peak platelet count exceeded 100,000 mm3/L in these 12 patients. Toxicity was evidenced primarily in GI-related side effects, notable diarrhea, urgency, and vomiting. 2 patients developed transaminitis.[5]

Rheumatoid arthritis

A phase II study of rheumatoid arthritis patients failing to respond to a biologic agent showed little efficacy as compared to placebo, but the drug was well tolerated. In patients with high inflammatory burden, measured by levels of C-reactive proteinACR20 was achieved by a significantly higher portion of those in the fostamatinib group (42%) versus the placebo group (26%).[6]

Autoimmune thrombocytopenia

Immune thrombocytopenic purpura (ITP) is an autoimmune disease where the immune system attacks and destroys platelets in the blood, causing abnormally low platelet counts. It is characterized by the antibody-mediated destruction of platelets. Patients with ITP have accelerated clearance of circulating IgG-coated platelets via Fcγ receptor-bearing macrophages in the spleen and liver, leading to different levels of thrombocytopenia and variable degrees of mucocutaneous bleeding.[7] Recent studies of ITP pathophysiology suggest decreased platelet production may also be an important component of the thrombocytopenia. Many patients exhibit responses to established therapies, including corticosteroids, IV immunoglobulin, anti-D, splenectomy, and rituximab. However, there are a significant minority of patients who retain persistently low platelet counts despite treatment. These patients are consistently at risk of intracranial hemorrhage and other bleeding complications. Several thrombopoiesis-stimulating therapies including eltrombopag and AMG 531 are being investigated to help combat low platelet counts in ITP patients. Rigel reported results from two Phase III clinical trials for fostamatinib as an ITP treatment in August and October 2016. The study is the second Phase 3, multi-center, randomized, double-blind, placebo controlled, study of fostamatinib disodium in the treatment of persistent/chronic immune thrombocytopenic purpura that Rigel has conducted. Primary outcome measures are defined as a stable platelet response by the end of the study (week 24) of at least 50,000/µL on at least 4 of the 6 visits between weeks 14-24. Participants received either a placebo, 100 mg, or 150 mg of the drug in the morning and evening for 24 full weeks. The first study, FIT 1 (047) met the primary endpoint in a statistically significant manner, with 18% of patients hitting the 50,000 platelets/µL of blood and no patients receiving the placebo meeting that criteria. As of June 2016, the open-label, long term extension study (049) is currently tracking 118 patients who opted to receive fostamatinib after completing either study 047 or 048.[8]

Autoimmune hemolytic anemia

Approval for treatment of autoimmune hemolytic anemia (AIHA) is in Stage 1 of Phase II trials. This study is a Phase 2, multi-center, open label, Simon two-stage study to evaluate the safety and efficacy of fostamatinib disodium in the treatment of warm antibody autoimmune hemolytic anemia. Primary outcome measures examined include a hemoglobin response measured by levels higher than 10 g/dL and 2 g/dL higher than the baseline hemoglobin. Responses were studied for a period of 12 weeks and for a dose of 150 mg in the morning and evening. The study began in April 2016 and is estimated to conclude in September 2017. The study is currently recruiting participants from U.S. states including Arizona, California, D.C., Massachusetts, New York, North Carolina, and Texas. Subjects must have had a diagnosis of primary or secondary warm antibody AIHA, and must have failed at least 1 prior treatment regimen for AIHA. Subjects cannot have a platelet count less than 30,000/µL, have AIHA secondary to autoimmune disease, have uncontrolled or poorly controlled hypertension, or have cold antibody AIHA, cold agglutinin syndrome, mixed type AIHA, or paroxysmal cold hemoglobinuria.[9]

Immunoglobulin A nephropathy

Fostamatinib as a treatment for IgA nephropathy (IgAN) is in Phase II trials, which will conclude at the end of 2016. IgAN is a chronic autoimmune disease associated with inflammation in the kidneys that reduces their ability to successfully filter blood. There are currently no disease-targeted therapies for IgAN. Participants are currently being recruited from the US, Austria, Germany, Hong Kong, Taiwan, and the UK. Patients must be between 18 and 70 years old, have renal biopsy findings consistent with IgA nephropathy, have been treated with an Angiotensin Converting Enzyme inhibitor (ACEi) and/or an Angiotensin II Receptor Blocker (ARB) for at least 90 days at the maximum approved dose, have a proteinuria > 1 gm/day at diagnosis of IgA nephropathy and a level > 0.5 gm/day at the second screening visit, and a blood pressure controlled to ≤ 1302/80 with angiotensin blockade. Eligible candidates cannot have recently used cyclophosphamide, mycophenolate mofetil, azathioprine, Rituximab, or > 15 mg/day of prednisone or any other corticosteroid equivalent. The study investigates whether fostamatinib is a safe and effective treatment for IgAN. It is a Phase 2, multi-center, randomized, double-blind, ascending-dose, placebo-controlled clinical study. Primary outcome measures include the mean change in proteinuria as measured by spot urine protein/creatinine ratio (sPCR). Effects were evaluated for 100 mg, 150 mg, and placebo formulations taken twice daily by mouth for 24 weeks. The study began in October 2014 and is expected to complete by June 2017.[10]

PATENTS

https://patents.google.com/patent/WO2008064274A1/en14

Suitable active 2,4-pyrimidinediamine compounds are described, for example, in U.S. application Serial No. 10/355,543 filed January 31 , 2003 (US2004/0029902A1), international application Serial No. PCT/US03/03022 filed January 31, 2003 (WO 03/063794), U.S. application Serial No. 10/631,029 filed July 29, 2003 (US 2005/0028212), international application Serial No. PCT/US03/24087 (WO2004/014382), U.S. application Serial No. 10/903,263 filed July 30, 2004 (US2005/0234049), and international application Serial No.
PCT/US2004/24716 (WO 2005/016893), the disclosures of which are incorporated herein by reference. In such 2,4-pyrimidinediamine compounds, the progroup(s) Rp can be attached to any available primary or secondary amine, including, for example, the N2 nitrogen atom of the 2,4-pyrimidinediamine moiety, the N4 nitrogen atom of the 2,4-pyrimidinediamine moiety, and/or a primary or secondary nitrogen atom included in a substituent on the 2,4-pyrimidinediamine compound. The use of phosphate-containing progroups Rp is especially useful for 2,4-pyrimidinediamine compounds that exhibit poor water solubility under physiological conditions (for example, solubilities of less than about 10 μg/ml). While not intending to be bound by any theory of operation, it is believed that the phosphate-containing progroups aid the solubility of the underlying active 2,4-pyrimidinediamine compound, which in turn increases its bioavailability when administered orally. It is believed that the phosphate progroups Rp are metabolized by phosphatase enzymes found in the digestive tract, permitting uptake of the underlying active drug.

[0024] It has been discovered that the water solubility and oral bioavailability of a particular biologically active 2,4-pyrimidinediamine compound, illustrated below (Compound 1), increased dramatically when formulated to include a progroup Rp of the formula -CH2-O-P(O)(OH)2 at the ring nitrogen atom highlighted with the asterisk (Compound 4):

Compound 4

EXAMPLES

1. Synthesis of Prodrug Compound 4

1.1 N4-(2,2-dimethyl-4-[(di-tert-butyl phosphonoxy)methyl]-3- oxo-5-pyrido[l,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5- trimethoxyphenyl)-2,4-pyrimidinediamine (Compound 3)

4 days

[0260] N4-(2,2-dimethyl-3-oxo-4H-5-pyrido[l,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (1, 1.0 g, 2.12 mmol), Cs2CO3 (1.0 g, 3.07 mmol) and di-tert-butyl chloromethyl phosphate (2, 0.67 g, 2.59 mmol) in acetone (20 mL) was stirred at room temperature under nitrogen atmosphere. Progress of the reaction was monitored by LC/MS. Crude reaction mixture displayed three product peaks with close retention times with M++H 693 (minor-1), 693 (major; 3) and 477 (minor-2) besides starting material (Compound 1). Upon stirring the contents for 4 days (70% consumption), the reaction mixture was concentrated and diluted with water. The resultant pale yellow precipitate formed was collected by filtration and dried. The crude solid was purified by silica gel (pretreated with 10%NEt3/CH2Cl2 followed by eluting with hexanes) column chromatography by gradient elution with 70% EtOAc / hexanes-100% EtOAc). The fractions containing Compound 1 and M++H 693 were collected and concentrated. The resulting crude white solid was subjected to repurifϊcation in the similar manner as described previously but by eluting with 30%-50%-75%-100% EtOAc/hexanes. The major product peak with M++H 693 was collected as a white solid (270 mg, 18%) and was characterized as N4-(2,2-dimethyl-4-[(di-tert-butyl phosphonoxy)methyl]-3-oxo-5-pyrido[l,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (Compound 3). 1H NMR (DMSO-d6): δ 9.21 (s, IH), 9.17 (s, IH), 8.16 (d, IH, J = 2.6 Hz), 7.76 (d, IH, J = 8.5 Hz), 7.44 (d, IH, J = 8.5 Hz), 7.02 (s, 2H), 5.78 (d, IH, J3PH = 6.1 Hz), 3.64 (s, 6H), 3.58 (s, 3H), 1.45 (s, 6H), 1.33 (s, 9H). LCMS: ret. time: 14.70 min.; purity: 95%; MS (m/e): 693 (MH+). 31P NMR (DMSO-d6): -11.36.

1.2. N4-(2,2-dimethyl-4-[(dihydrogen phosphonoxy)methyl]-3- oxo-5-pyrido[l,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5- trimethoxyphenyl)-2,4-pyrimidinediamine (Compound 4)

[0261] Trifluoroacetic acid (1.5 mL) was added dropwise as a neat for 5 min to N4-(2,2-dimethyl-4-[(di-tert-butyl phosphonoxy)methyl]-3-oxo-5-pyrido[l,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (Compound 3, 120 mg, 0.173 mmol ) dissolved in CH2Cl2 (10 mL) at 00C under nitrogen atmosphere. The contents were allowed to stir for 1.5 h. Progress of the reaction mixture was monitored by LC/MS. After complete consumption of the starting material, reaction mixture was concentrated, dried and triturated with ether. The ethereal layer was decanted and dried to provide the crude solid. LC/MS analysis of the crude displayed three peaks with M++H 581, 471 and 501. The peak corresponding to M++H 581 was collected by preparative HPLC chromatographic purification. The fractions were lyophilised and dried to provide 53 mg (52%) of off white fluffy solid and characterized as N4-(2,2-dimethyl-4-[(dihydrogen phosphonoxy)methyl]-3-oxo-5-pyrido[ 1 ,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (Compound 4). 1H NMR (DMSO-d6): δ 9.21 (br s, 2H), 8.16 (d, IH, J = 2.6 Hz), 7.93 (d, IH, J = 8.5 Hz), 7.39 (d, IH, J = 8.5 Hz), 7.05 (s, 2H), 5.79 (d, IH, J3PH = 6.6 Hz), 3.67 (s, 6H), 3.59 (s, 3H), 1.44 (s, 6H). LCMS: ret. time: 8.52 min.; purity: 95%; MS (m/e): 581 (MH+). 31P NMR (DMSO-d6): -2.17.

2. Alternative Synthesis of Prodrug Compound 4
[0262] An alternative method of synthesizing prodrug Compound 4 which alleviates the need for column chromatography and HPLC purification is provided below.

2.1 Synthesis of N4-(2,2-dimethyl-4- [(di-tert-butyl
phosphonoxy)methyl] -3-oxo-5-pyrido [ 1 ,4] oxazin-6-yl)-5- fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine
(Compound 3)

rt
92% conversion

majoπminor 6.5:1

[0263] N4-(2,2-dimethyl-3-oxo-4H-5-pyrido[l,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (Compound 1, 19.73 g, 41.97 mmol),
Cs2CO3 (15.04 g, 46.16 mmol) and di-tert-butyl chloromethyl phosphate (13.0 g, 50.38 mmol) in DMF (100 mL) was stirred at room temperature under nitrogen atmosphere. Progress of the reaction was monitored by in process LC/MS. Crude reaction mixture displayed two product peaks (ratio 1 :6.5) with close retention times displaying M++H 693 (minor) and 693 (major) besides starting material (Compound 1). Initial yellow reaction mixture turned to olive green as the reaction progressed. Workup was carried out as follows 1). Upon stirring the contents for 30 h (92% consumption), reaction mixture was poured onto ice-water (400 mL) and stirred the contents by adding brine solution (200 mL). Fine yellow tan solid formed was filtered, washed with water and dried overnight.
2). The solid (35 g) was dissolved in MTBE (500 mL) and washed with water (40OmL). Aqueous layer was extracted with MTBE (2 X 350 mL) till the absence of UV on TLC. Combined organic layers were dried over anhydrous Na2SO4 and decanted.
Note: step 2 can be done directly, however, DMF extraction back into solution leads to difficulty in the crystallization step.
3). The dark red clear solution was subjected to 10 g of activated charcoal treatment, heated to boil and filtered.
4). The dark red clear solution was concentrated by normal heating to 400 mL of its volume and left for crystallization. The solid crystallized as granules was filtered, crushed the granules to powder, washed with MTBE (400 mL) and dried under high vacuum. See step 7 for the workup of mother liquor. Weight of the solid: 17 g; purity: 90% (Compound 3), 6.26% (Compound 1), 1.8% (minor M+ 693).
5). At this stage solid was taken in 500 ml of ethyl ether and heated to boil. Cooled and filtered to remove undissolved material. Filtrate was concentrated.
6). Above concentrate was subjected to crystallization in MTBE (300 mL).

The white solid formed was filtered, washed with MTBE (100 mL) and dried under high vacuum to provide the desired N4-(2,2-dimethyl-4-[(di-tert-butyl
phosphonoxy)methyl]-3-oxo-5-pyrido[l,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (Compound 3) in 97% purity. 1H NMR (DMSO-d6): δ 9.21 (s, IH), 9.17 (s, IH), 8.16 (d, IH, J = 2.6 Hz), 7.76 (d, IH, J = 8.5 Hz), 7.44 (d, IH, J = 8.5 Hz), 7.02 (s, 2H), 5.78 (d, IH, J3PH = 6.1 Hz), 3.64 (s, 6H), 3.58 (s, 3H), 1.45 (s, 6H), 1.33 (s, 9H). LCMS: ret. time: 14.70 min.; purity: 95%; MS (m/e): 693 (MH+). 31P NMR (DMSO-d6): -11.36. Weight of the solid: 15.64 g (yield: 55%); purity: 97% (Compound 3), 3% (Compound 1).
7). The mother liquor was concentrated and steps 5 and 6 were repeated to provide Compound 3.

2.2. Synthesis of N4-(2,2-dimethyl-4-[(dihydrogen
phosphonoxy)methyl] -3-oxo-5-pyrido [ 1 ,4] oxazin-6-yl)-5- fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine
(Compound 4)
[0264] N4-(2,2-dimethyl-4-[(di-tert-butyl phosphonoxy)methyl]-3-oxo-5-pyrido[l,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (Compound 3); (15.0 g, 21.67 mmol) dissolved in AcOH:H20 (225 niL, 4:1) was heated at 65 0C (oil bath temp). The progress of the reaction was monitored by in process LC/MS. The reaction mixture transformed to faint tan white solid after Ih of heating. At this point most of Compound 3 converted to mono des t-butyl product. After 3h of heating, consumption of SM and complete conversion of intermediate (mono des t-butylated) to product was observed.
[0265] Reaction mixture was cooled, poured onto ice-water (200 mL), stirred for 20 min and filtered. The clear white filter cake was washed with water (600 ml) and acetone (200 mL) successively, dried for 2h followed by drying under high vacuum over P2O5 in a desiccator. Weight of the solid: 12.70 g; purity: 97% (Compound 3) and 3% (Compound 1) 1H NMR indicated acetic acid presence (1 :1)
[0266] To remove acetic acid, the solid was taken in acetonitrile (300 mL) and concentrated by rotovap vacuum. This process was repeated 2 times with acetonitrile and toluene (3 X 300 mL). The solid obtained was dried under high vacuum at 50 OC. [0267] Finally, the solid was taken in acetone (400 mL), filtered and dried to provide solid N4-(2,2-dimethyl-4-[(dihydrogen phosphonoxy)methyl]-3-oxo-5-pyrido[l,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (Compound 4). 1H NMR (DMSO-d6): δ 9.21 (br s, 2H), 8.16 (d, IH, J = 2.6 Hz), 7.93 (d, IH, J = 8.5 Hz), 7.39 (d, IH, J = 8.5 Hz), 7.05 (s, 2H), 5.79 (d, IH, J3PH = 6.6 Hz), 3.67 (s, 6H), 3.59 (s, 3H), 1.44 (s, 6H). LCMS: ret. time: 8.52 min.; purity: 95%; MS (m/e): 581 (MH+). 31P NMR (DMSO-d6): -2.17.

3. Synthesis of N4-(2,2-dimethyl-4-[(dihydrogen phosphonoxy)methyl]-3-oxo- 5-pyrido[l,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4- pyrimidinediamine mono calcium salt (Prodrug Salt 6)

[0268] Aqueous (10 niL) NaHCO3 (0.17 g, 2.02 mmol) solution was added dropwise to a suspension of N4-(2,2-dimethyl-4-[(dihydrogen phosphonoxy)methyl]-3-oxo-5-pyrido[l,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (0.5 g, 0.86 mmol) in water (5 mL) at room temperature while stirring the contents. The clear solution formed was treated with aqueous (10 mL) CaCl2 (0.11 g in 10 mL water, 0.99 mmol) n a dropwise manner at room temperature. The addition resulted in the precipitation of a white solid from reaction mixture. Upon completion of addition, the contents were stirred for a period of 30 min, filtered, washed with water (40 mL) and dried. The clear white solid was taken in water (30 mL) and heated on a stir plate to boil. The solution was cooled, filtered and dried. The white solid collected and further dried under high vacuo at 80 0C for 32 h to provide 0.41 g (83%) of solid N4-(2,2-dimethyl-4-[(dihydrogen phosphonoxy)methyl]-3-oxo-5-pyrido[ 1 ,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine mono calcium salt (Prodrug Salt 6).
[0269] Ca(OAc)2 may also used in place Of CaCl2 in this preparation.

4. Synthesis of N4-(2,2-dimethyl-4-[(dihydrogen phosphonoxy)methyl]-3-oxo- 5-pyrido[l,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4- pyrimidinediamine disodium salt hexahydrate and monosodium salt
hydrate

[0270] A round-bottomed flask was charged with 10.00 g N4-(2,2-dimethyl-4-[(dihydrogen phosphonoxy)methyl]-3-oxo-5-pyrido[ 1 ,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (Compound 4) and 140 mL water into a round bottom flask to form a slurry having a pH between 3.6 and 3.7. The pH was adjusted to in the range of 9.3 to 10.3 by addition of 1 M aqueous NaOH, initially forming a turbid solution, which returned to a suspension upon prolonged stirring. The mixture was heated at reflux, then the turbid solution was hot filtered through filter paper. The solid collected in the filter paper was rinsed with 10 mL hot water.
Isopropanol (75 mL) was added to the filtrate, yielding a clear solution, which was allowed to cool to room temperature over about 1.5 hours with stirring, during which time a solid precipitated. The precipitate was collected by filtration, rinsed with 47 mL isopropanol, and taken up in 73 mL acetone to form a slurry, which was stirred for 1.5 hours at room temperature. The solid was again collected by filtration and rinsed with 18 mL acetone, then dried at about 40 0C under vacuum until substantially all isopropanol and acetone was removed (i.e., below 0.5 wt% each). The product was exposed to air at about 40% relative humidity and room temperature until the water content stabilized at about 15% by Karl Fisher titration, yielding 8.18 g of the title compound. 1H NMR (D2O): δ 7.67 (d, IH, J = 3.8 Hz), 7.49 (d, IH, J = 8.8 Hz), 6.87 (d, IH, J = 8.8 Hz), 6.50 (s, 2H), 5.52 (d, IH, J3PH = 2.0 Hz), 3.53 (s, 3H), 3.47 (s, 6H), 1.32 (s, 6H). 31P NMR (D2O): 2.75. The prodrug salt hydrate was obtained as a pure-white, highly crystalline material. Microscopic investigation indicated that the crystallites are plate-like with a particle size of less than 10 μm. Polarized light microscopy revealed birefringence corroborating the crystalline nature of the hydrate. [0271] The monosodium salt can be prepared from N4-(2,2-dimethyl-4-[(dihydrogen phosphonoxy)methyl]-3-oxo-5-pyrido[l,4]oxazin-6-yl)-5-fiuoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine and sodium hydroxide by a proper pH control; pH of 5-5.5 results in predominantly the formation of monosodium salt.

References

  1. Jump up to:a b S.P. McAdoo; F.W.K. Tam (2011). “Fostamatinib Disodium”. Drugs of the Future36 (4): 273–280.
  2. Jump up^ Braselmann, S; Taylor, V; Zhao, H; Wang, S; Sylvain, C; Baluom, M; Qu, K; Herlaar, E; et al. (2006). “R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation”. The Journal of Pharmacology and Experimental Therapeutics319 (3): 998–1008. doi:10.1124/jpet.106.109058PMID 16946104.
  3. Jump up^ Linger, Rachel M. A.; Keating, Amy K.; Earp, H. Shelton; Graham, Douglas K. (2008-01-01). “TAM Receptor Tyrosine Kinases: Biologic Functions, Signaling, and Potential Therapeutic Targeting in Human Cancer”Advances in cancer research100: 35–83. doi:10.1016/S0065-230X(08)00002-XISSN 0065-230XPMC 3133732Freely accessiblePMID 18620092.
  4. Jump up^ Morales-Torres, Jorge (2010). “R788 (fostamatinib disodium): a novel approach for the treatment of rheumatoid arthritis”. International Journal of Clinical Rheumatology5 (1): 9–15. doi:10.2217/ijr.09.69.
  5. Jump up^ “Pilot Study of Fostamatinib Disodium/R935788 for the Treatment of Adult Refractory Immune Thrombocytopenic Purpura (ITP) – Full Text View – ClinicalTrials.gov”clinicaltrials.gov. Retrieved 2016-11-19.
  6. Jump up^ “Fostamatinib Shown to Be Safe but Not Effective in Rheumatoid Arthritis Patients Unresponsive to Biologic Agents”. Science Daily. Jan 27, 2011. Retrieved Dec 13, 2012.
  7. Jump up^ Podolanczuk, Anna; Lazarus, Alan H.; Crow, Andrew R.; Grossbard, Elliot; Bussel, James B. (2009-04-02). “Of mice and men: an open-label pilot study for treatment of immune thrombocytopenic purpura by an inhibitor of Syk”Blood113 (14): 3154–3160. doi:10.1182/blood-2008-07-166439ISSN 0006-4971PMID 19096013.
  8. Jump up^ “A Efficacy and Safety Study of Fostamatinib in the Treatment of Persistent/Chronic Immune Thrombocytopenic Purpura (ITP) – Full Text View – ClinicalTrials.gov”clinicaltrials.gov. Retrieved 2016-11-19.
  9. Jump up^ “A Safety and Efficacy Study of R935788 in the Treatment of Warm Antibody Autoimmune Hemolytic Anemia (AIHA) – Full Text View – ClinicalTrials.gov”clinicaltrials.gov. Retrieved 2016-11-19.
  10. Jump up^ “Safety and Efficacy Study of Fostamatinib to Treat Immunoglobin A (IgA) Nephropathy – Full Text View – ClinicalTrials.gov”clinicaltrials.gov. Retrieved 2016-11-19.
Patent ID Title Submitted Date Granted Date
US2009048214 Methods for Treating Renal Tumors Using 2, 4-Pyrimidinediamine Drug and Prodrug Compounds
2009-02-19
US2017291909 Prodrugs of 2, 4-Pyrimidinediamine Compounds and Their Uses
2016-11-23
US8481724 Synthesis of 2, 4-pyrimidinediamines
2012-09-24
2013-07-09
US2017275617 COMPOSITIONS AND METHODS FOR TREATING OR PREVENTING LUPUS
2017-04-26
US9657292 COMPOSITIONS AND METHODS FOR TREATING OR PREVENTING LUPUS
2010-11-24
2014-05-08
Patent ID Title Submitted Date Granted Date
US8476263 Prodrugs of 2, 4-pyrimidinediamine compounds and their uses
2012-05-18
2013-07-02
US8785437 Prodrugs of 2, 4-pyrimidinediamine compounds and their uses
2013-06-04
2014-07-22
US8652492 Wet granulation using a water sequestering agent
2013-01-10
2014-02-18
US8372415 Wet granulation using a water sequestering agent
2012-07-26
2013-02-12
US2009088371 COMBINATION THERAPY WITH SYK KINASE INHIBITOR
2009-04-02
Patent ID Title Submitted Date Granted Date
US9266912 Prodrugs of 2, 4-Pyrimidinediamine Compounds and Their Uses
2014-06-20
2014-12-04
US8691798 Synthesis of 2, 4-pyrimidinediamines
2013-06-07
2014-04-08
US8299242 Synthesis of 2, 4-Pyrimidinediamines
2011-01-06
US9532998 Prodrugs of 2, 4-Pyrimidinediamine Compounds and Their Uses
2016-01-13
2016-05-19
US8951504 (trimethoxyphenylamino) pyrimidinyl formulations
2014-05-29
2015-02-10
Patent ID Title Submitted Date Granted Date
US8263122 WET GRANULATION USING A WATER SEQUESTERING AGENT
2009-05-14
US2017166550 BENZOTHIOPHENE-BASED SELECTIVE ESTROGEN RECEPTOR DOWNREGULATORS
2016-12-09
US2017166551 BENZOTHIOPHENE-BASED SELECTIVE ESTROGEN RECEPTOR DOWNREGULATOR COMPOUNDS
2016-12-09
US9695204 Pharmaceutical Process and Intermediates
2016-06-10
US9388203 Pharmaceutical Process and Intermediates
2014-12-19
2015-06-25
Patent ID Title Submitted Date Granted Date
US2010158905 COMBINATION THERAPY OF ARTHRITIS WITH TRANILAST
2010-06-24
US2009012045 Methods of Treating Cell Proliferative Disorders
2009-01-08
US8227455 Methods of treating cell proliferative disorders
2006-12-07
2012-07-24
US8771648 (Trimethoxyphenylamino) pyrimidinyl formulations
2012-07-27
2014-07-08
US8445485 Prodrugs of 2, 4-pyrimidinediamine compounds and their uses
2012-03-12
2013-05-21
Patent ID Title Submitted Date Granted Date
US2014309233 SYK KINASE INHIBITORS AS TREATMENT FOR MALARIA
2013-12-18
2014-10-16
US8481521 Methods of treating cell proliferative disorders
2012-06-04
2013-07-09
US8211888 Prodrugs of 2, 4-Pyrimidinediamine Compounds and Their Uses
2011-12-29
2012-07-03
US2011301125 Method for Treating Macular Degeneration
2011-12-08
US8530466 Use of 2, 4-Pyrimidinediamines For the Treatment of Atherosclerosis
2011-02-24
Patent ID Title Submitted Date Granted Date
US2017246171 Treatment Of RB-Negative Tumors Using Topoisomerase Inhibitors In Combination With Cyclin Dependent Kinase 4/6 Inhibitors
2017-03-13
US2017135960 AGGREGATING MICROPARTICLES FOR MEDICAL THERAPY
2016-11-11
US9737554 Prodrugs of 2, 4-Pyrimidinediamine Compounds and Their Uses
2016-01-25
US9283238 Prodrugs of 2, 4-Pyrimidinediamine Compounds and Their Uses
2014-11-06
2015-05-14
US9567641 COMBINATION THERAPY FOR THE TREATMENT OF CANCER USING AN ANTI-C-MET ANTIBODY
2014-07-03
2015-01-08
Patent ID Title Submitted Date Granted Date
US8912170 Prodrugs of 2, 4-pyrimidinediamine compounds and their uses
2013-04-12
2014-12-16
US8211889 Prodrugs of 2, 4-pyrimidinediamine compounds and their uses
2012-01-12
2012-07-03
US2011206661 TRIMETHOXYPHENYL INHIBITORS OF TYROSINE KINASE
2011-08-25
US8163902 PRODRUGS OF 2, 4-PYRIMIDINEDIAMINE COMPOUNDS AND THEIR USES
2011-06-16
2012-04-24
US2011015155 Deuterated 2, 4-Pyrimidinediamine Compounds and Prodrugs Thereof and Their Uses
2011-01-20
Fostamatinib
Fostamatinib.svg
Clinical data
Trade names Tavalisse
Synonyms Fostamatinib disodium hexahydrate, tamatinib fosdium, R-788, NSC-745942, R-935788
MedlinePlus a618025
Pregnancy
category
  • US: C (Risk not ruled out)
Routes of
administration
by mouth
Legal status
Legal status
Pharmacokinetic data
Bioavailability 55% (tamatinib metabolite)
Protein binding 98% (tamatinib metabolite)
Metabolism Gut (ALP to tamatinib)
Liver (tamatinib metabolite by CYP3A4UGT1A9)
Elimination half-life 15 hours
Excretion faecal (80%), urine (20%)
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ECHA InfoCard 100.125.771 Edit this at Wikidata
Chemical and physical data
Formula C23H26FN6O9P
Molar mass 580.47 g/mol
3D model (JSmol)

Fostamatinib

structure depiction
    1. FDA Orange Book Patents

      FDA Orange Book Patents: 1 of 14 (FDA Orange Book Patent ID)
      Patent 7989448
      Expiration Jun 12, 2026
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 2 of 14 (FDA Orange Book Patent ID)
      Patent 8163902
      Expiration Jun 17, 2026
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 3 of 14 (FDA Orange Book Patent ID)
      Patent 9737554
      Expiration Jan 19, 2026
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 4 of 14 (FDA Orange Book Patent ID)
      Patent 7449458
      Expiration Sep 4, 2026
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 5 of 14 (FDA Orange Book Patent ID)
      Patent 8211889
      Expiration Jan 19, 2026
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 6 of 14 (FDA Orange Book Patent ID)
      Patent 8263122
      Expiration Nov 24, 2030
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 7 of 14 (FDA Orange Book Patent ID)
      Patent 8445485
      Expiration Jun 17, 2026
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 8 of 14 (FDA Orange Book Patent ID)
      Patent 8652492
      Expiration Nov 6, 2028
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 9 of 14 (FDA Orange Book Patent ID)
      Patent 8771648
      Expiration Jul 27, 2032
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 10 of 14 (FDA Orange Book Patent ID)
      Patent 8912170
      Expiration Jun 17, 2026
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 11 of 14 (FDA Orange Book Patent ID)
      Patent 8951504
      Expiration Jul 27, 2032
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 12 of 14 (FDA Orange Book Patent ID)
      Patent 9266912
      Expiration Jan 19, 2026
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 13 of 14 (FDA Orange Book Patent ID)
      Patent 9283238
      Expiration Jun 17, 2026
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      FDA Orange Book Patents: 14 of 14 (FDA Orange Book Patent ID)
      Patent 7538108
      Expiration Mar 28, 2026
      Applicant RIGEL PHARMS INC
      Drug Application
      1. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)
      2. N209299 (Prescription Drug: TAVALISSE. Ingredients: FOSTAMATINIB DISODIUM)

///////////SQ8A3S5101, TAVALISSE ,  фостаматиниб , وستاماتينيب 福他替尼 , FDA 2018, fostamatinib disodium hexahydrate, fostamatinib , ホスタマチニブジナトリウム水和物

COC1=CC(NC2=NC=C(F)C(NC3=NC4=C(OC(C)(C)C(=O)N4COP(O)(O)=O)C=C3)=N2)=CC(OC)=C1OC

FDA approves first treatment Azedra (iobenguane I 131) for rare adrenal tumors

$
0
0

FDA approves first treatment for rare adrenal tumors

The U.S. Food and Drug Administration today approved Azedra (iobenguane I 131) injection for intravenous use for the treatment of adults and adolescents age 12 and older with rare tumors of the adrenal gland (pheochromocytoma or paraganglioma) that cannot be surgically removed (unresectable), have spread beyond the original tumor site and require systemic anticancer therapy. This is the first FDA-approved drug for this use.

July 30, 2018

Release

The U.S. Food and Drug Administration today approved Azedra (iobenguane I 131) injection for intravenous use for the treatment of adults and adolescents age 12 and older with rare tumors of the adrenal gland (pheochromocytoma or paraganglioma) that cannot be surgically removed (unresectable), have spread beyond the original tumor site and require systemic anticancer therapy. This is the first FDA-approved drug for this use.

“Many patients with these ultra-rare cancers can be treated with surgery or local therapies, but there are no effective systemic treatments for patients who experience tumor-related symptoms such as high blood pressure,” said Richard Pazdur, M.D., director of the FDA’s Oncology Center of Excellence and acting director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research. “Patients will now have an approved therapy that has been shown to decrease the need for blood pressure medication and reduce tumor size in some patients.”

Pheochromocytomas are rare tumors of the adrenal glands. These glands are located right above the kidneys and make hormones including stress hormones called epinephrines and norepinephrines. Pheochromocytomas increase the production of these hormones, leading to hypertension (high blood pressure) and symptoms such as headaches, irritability, sweating, rapid heart rate, nausea, vomiting, weight loss, weakness, chest pain or anxiety. When this type of tumor occurs outside the adrenal gland, it is called a paraganglioma.

The efficacy of Azedra was shown in a single-arm, open-label, clinical trial in 68 patients that measured the number of patients who experienced a 50 percent or greater reduction of all antihypertensive medications lasting for at least six months. This endpoint was supported by the secondary endpoint, overall tumor response measured by traditional imaging criteria. The study met the primary endpoint, with 17 (25 percent) of the 68 evaluable patients experiencing a 50 percent or greater reduction of all antihypertensive medication for at least six months. Overall tumor response was achieved in 15 (22 percent) of the patients studied.

The most common severe side effects reported by patients receiving Azedra in clinical trials included low levels of white blood cells (lymphopenia), abnormally low count of a type of white blood cells (neutropenia), low blood platelet count (thrombocytopenia), fatigue, anemia, increased international normalized ratio (a laboratory test which measures blood clotting), nausea, dizziness, hypertension and vomiting.

As it is a radioactive therapeutic agent, Azedra includes a warning about radiation exposure to patients and family members, which should be minimized while the patient is receiving Azedra. The risk of radiation exposure is greater in pediatric patients. Other warnings and precautions include a risk of lower levels of blood cells (myelosuppression), underactive thyroid, elevations in blood pressure, renal failure or kidney injury and inflammation of lung tissue (pneumonitis). Myelodysplastic syndrome and acute leukemias, which are cancers of the blood and bone marrow, were observed in patients who received Azedra, and the magnitude of this risk will continue to be studied. Azedra can cause harm to a developing fetus; women should be advised of the potential risk to the fetus and to use effective contraception after receiving Azedra. Radiation exposure associated with Azedra may cause infertility in males and females.

The FDA granted this application Fast TrackBreakthrough Therapy and Priority Review designations. Azedra also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The FDA granted the approval of Azedra to Progenics Pharmaceuticals, Inc.

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm615155.htm?utm_campaign=07302018_PR_treatment%20for%20rare%20adrenal%20tumors&utm_medium=email&utm_source=Eloqua

/////////////// Azedra, iobenguane I 131, fda 2018, Progenics Pharmaceuticals, Fast TrackBreakthrough Therapy,  Priority Review, orphan drug,

Iobenguane I 131

$
0
0

Iobenguane I-131.png

Iobenguane I 131

FDA approves first treatment for rare adrenal tumors

The U.S. Food and Drug Administration today approved Azedra (iobenguane I 131) injection for intravenous use for the treatment of adults and adolescents age 12 and older with rare tumors of the adrenal gland (pheochromocytoma or paraganglioma) that cannot be surgically removed (unresectable), have spread beyond the original tumor site and require systemic anticancer therapy. This is the first FDA-approved drug for this use.

July 30, 2018

Release

The U.S. Food and Drug Administration today approved Azedra (iobenguane I 131) injection for intravenous use for the treatment of adults and adolescents age 12 and older with rare tumors of the adrenal gland (pheochromocytoma or paraganglioma) that cannot be surgically removed (unresectable), have spread beyond the original tumor site and require systemic anticancer therapy. This is the first FDA-approved drug for this use.

“Many patients with these ultra-rare cancers can be treated with surgery or local therapies, but there are no effective systemic treatments for patients who experience tumor-related symptoms such as high blood pressure,” said Richard Pazdur, M.D., director of the FDA’s Oncology Center of Excellence and acting director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research. “Patients will now have an approved therapy that has been shown to decrease the need for blood pressure medication and reduce tumor size in some patients.”

Pheochromocytomas are rare tumors of the adrenal glands. These glands are located right above the kidneys and make hormones including stress hormones called epinephrines and norepinephrines. Pheochromocytomas increase the production of these hormones, leading to hypertension (high blood pressure) and symptoms such as headaches, irritability, sweating, rapid heart rate, nausea, vomiting, weight loss, weakness, chest pain or anxiety. When this type of tumor occurs outside the adrenal gland, it is called a paraganglioma.

The efficacy of Azedra was shown in a single-arm, open-label, clinical trial in 68 patients that measured the number of patients who experienced a 50 percent or greater reduction of all antihypertensive medications lasting for at least six months. This endpoint was supported by the secondary endpoint, overall tumor response measured by traditional imaging criteria. The study met the primary endpoint, with 17 (25 percent) of the 68 evaluable patients experiencing a 50 percent or greater reduction of all antihypertensive medication for at least six months. Overall tumor response was achieved in 15 (22 percent) of the patients studied.

The most common severe side effects reported by patients receiving Azedra in clinical trials included low levels of white blood cells (lymphopenia), abnormally low count of a type of white blood cells (neutropenia), low blood platelet count (thrombocytopenia), fatigue, anemia, increased international normalized ratio (a laboratory test which measures blood clotting), nausea, dizziness, hypertension and vomiting.

As it is a radioactive therapeutic agent, Azedra includes a warning about radiation exposure to patients and family members, which should be minimized while the patient is receiving Azedra. The risk of radiation exposure is greater in pediatric patients. Other warnings and precautions include a risk of lower levels of blood cells (myelosuppression), underactive thyroid, elevations in blood pressure, renal failure or kidney injury and inflammation of lung tissue (pneumonitis). Myelodysplastic syndrome and acute leukemias, which are cancers of the blood and bone marrow, were observed in patients who received Azedra, and the magnitude of this risk will continue to be studied. Azedra can cause harm to a developing fetus; women should be advised of the potential risk to the fetus and to use effective contraception after receiving Azedra. Radiation exposure associated with Azedra may cause infertility in males and females.

The FDA granted this application Fast TrackBreakthrough Therapy and Priority Review designations. Azedra also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The FDA granted the approval of Azedra to Progenics Pharmaceuticals, Inc.

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm615155.htm?utm_campaign=07302018_PR_treatment%20for%20rare%20adrenal%20tumors&utm_medium=email&utm_source=Eloqua

Iobenguane I-131.png

Iobenguane (131I); Iobenguane I 131; Iobeguane I 131; 3-Iodobenzylguanidine; 131I-MIBG; Azedra

77679-27-7 CAS NUMBER

PATENT US 4584187

Guanidine, [[3-(iodo-131I)phenyl]methyl]-

  • [[3-(Iodo-131I)phenyl]methyl]guanidine
  • 131I-MIBG
  • Azedra
  • Iobenguane (131I)
  • Iobenguane I 131
  • Ultratrace Iobenguane 131I
  • [131I]-m-Iodobenzylguanidine
  • [131I]-m-Iodobenzylguanidine
  • m-Iodobenzylguanidine-131I
  • m-[131I]Iodobenzylguanidine
Molecular Formula: C8H10IN3
Molecular Weight: 279.095 g/mol
Image result for Iobenguane I 131Image result for Iobenguane I 131
(I 131-meta-iodobenzylguanidine sulfate)
Iobenguane sulfate; M-Iodobenzylguanidine hemisulfate; MIBG; 87862-25-7; 3-Iodobenzylguanidine hemisulfate; 3-Iodobenzyl-guanidine hemisulfate
Molecular Formula: C16H22I2N6O4S
Molecular Weight: 648.259 g/mol

AdreView
(iobenguane I 123) Injection for Intravenous Use

SYN

CN 106187824

DESCRIPTION

AdreView (iobenguane I 123 Injection) is a sterile, pyrogen-free radiopharmaceutical for intravenous injection. Each mL contains 0.08 mg iobenguane sulfate, 74 MBq (2 mCi) of I 123 (as iobenguane sulfate I 123) at calibration date and time on the label, 23 mg sodium dihydrogen phosphate dihydrate, 2.8 mg disodium hydrogen phosphate dihydrate and 10.3 mg (1% v/v) benzyl alcohol with a pH of 5.0 – 6.5. Iobenguane sulfate I 123 is also known as I 123 meta-iodobenzlyguanidine sulfate and has the following structural formula:

AdreView (iobenguane I 123) Structural Formula Illustration

Physical Characteristics

Iodine 123 is a cyclotron-produced radionuclide that decays to Te 123 by electron capture and has a physical half-life of 13.2 hours.

Iobenguane I-131 is a guanidine analog with specific affinity for tissues of the sympathetic nervous system and related tumors. The radiolabeled forms are used as antineoplastic agents and radioactive imaging agents. (Merck Index, 12th ed) MIBG serves as a neuron-blocking agent which has a strong affinity for, and retention in, the adrenal medulla and also inhibits ADP-ribosyltransferase.

Iobenguane i-131 is a Radioactive Diagnostic Agent. The mechanism of action of iobenguane i-131 is as a Radiopharmaceutical Activity.

Iobenguane I-131 is an I 131 radioiodinated synthetic analogue of the neurotransmitter norepinephrineIobenguane localizes to adrenergic tissue and, in radioiodinated forms, may be used to image or eradicate tumor cells that take up and metabolize norepinephrine.

Iobenguane, also known as metaiodobenzylguanidine or mIBG, or MIBG (tradename Adreview) is a radiopharmaceutical,[1] used in a scintigraphy method called MIBG scan. Iobenguane is a radiolabeled molecule similar to noradrenaline.

The radioisotope of iodine used for the label can be iodine-123 (for imaging purposes only) or iodine-131 (which must be used when tissue destruction is desired, but is sometimes used for imaging also).

Pheochromocytoma seen as dark sphere in center of the body (it is in the left adrenal gland). Image is by MIBG scintigraphy, with radiation from radioiodine in the MIBG. Two images are seen of the same patient from front and back. Note dark image of the thyroid due to unwanted uptake of iodide radioiodine from breakdown of the pharmaceutical, by the thyroid gland in the neck. Uptake at the side of the head are from the salivary glands. Radioactivity is also seen in the bladder, from normal renal excretion of iodide.

It localizes to adrenergic tissue and thus can be used to identify the location of tumors[2] such as pheochromocytomas and neuroblastomas. With I-131 it can also be used to eradicate tumor cells that take up and metabolize norepinephrine.

Thyroid precautions

Thyroid blockade with (nonradioactive) potassium iodide is indicated for nuclear medicine scintigraphy with iobenguane/mIBG. This competitively inhibits radioiodine uptake, preventing excessive radioiodine levels in the thyroid and minimizing the risk of thyroid ablation ( in the case of I-131). The minimal risk of thyroid carcinogenesis is also reduced as a result.

The FDA-approved dosing of potassium iodide for this purpose are as follows: infants less than 1 month old, 16 mg; children 1 month to 3 years, 32 mg; children 3 years to 18 years, 65 mg; adults 130 mg.[3] However, some sources recommend alternative dosing regimens.[4]

Not all sources are in agreement on the necessary duration of thyroid blockade, although agreement appears to have been reached about the necessity of blockade for both scintigraphic and therapeutic applications of iobenguane. Commercially available iobenguane is labeled with iodine-123, and product labeling recommends administration of potassium iodide 1 hour prior to administration of the radiopharmaceutical for all age groups,[5] while the European Associated of Nuclear Medicine recommends (for iobenguane labeled with either I-131 or I-123,) that potassium iodide administration begin one day prior to radiopharmaceutical administration, and continue until the day following the injection, with the exception of newborns, who do not require potassium iodide doses following radiopharmaceutical injection.[4]

Product labeling for diagnostic iodine-131 iobenguane recommends potassium iodide administration one day before injection and continuing 5 to 7 days following.[6] Iodine-131 iobenguane used for therapeutic purposes requires a different pre-medication duration, beginning 24–48 hours prior to iobenguane injection and continuing 10–15 days following injection.[7]

Alternative imaging modality for pheochromocytoma

The FDOPA PET/CT scan has proven to be nearly 100% sensitive for detection of pheochromocytomas, vs. 90% for MIBG scans.[8][9][10] Centers which offer FDOPA PET/CT, however, are rare.

Clinical trials

Iobenguane I 131 for cancers

Iobenguane I 131 (as Azedra) has had a clinical trial as a treatment for malignant, recurrent or unresectable pheochromocytoma and paraganglioma, and the US FDA has granted it a Priority Review.[11]

PATENTS
Patent ID Title Submitted Date Granted Date
US7658910 PREPARATION OF RADIOLABELLED HALOAROMATICS VIA POLYMER-BOUND INTERMEDIATES
2008-04-10
2010-02-09
US2008241063 Combination set of Meta-Iodobenzyl guanidine freezing crystal and making method thereof and method for making a radioactive iodine marker
2007-03-29
2008-10-02
US7273601 Preparation of radiolabelled haloaromatics via polymer-bound intermediates
2003-01-16
2007-09-25
US6461585 Preparation of radiolabelled haloaromatics via polymer-bound intermediates
2002-10-08
US2010274052 PREPARATION OF RADIOLABELLED HALOAROMATICS VIA POLYMER-BOUND INTERMEDIATES
2010-10-28
/////////////// Azedra, iobenguane I 131, fda 2018, Progenics Pharmaceuticals, Fast TrackBreakthrough Therapy,  Priority Review, orphan drug, Iobenguane (131I), Iobenguane I 131, Iobeguane I 131, 3-Iodobenzylguanidine, 131I-MIBG, Azedra
C1=CC(=CC(=C1)I)CN=C(N)N

Anthony Melvin Crasto gets International award for Outstanding contribution to Pharma society by CMO ASIA 31st July 2018 Le Méridien Sentosa Singapore

$
0
0

38071673_2178688435507209_6792240850182078464_n

Conferred CMO Asia award 2018 🇸🇬 singapore

Shobha and Aishal crasto collect my International award for Excellence in Pharma by CMO ASIA 31st July 2018 | at an award function in Le Méridien Singapore, Sentosa

Thanking one and all for support

They went thru the paralysis trauma for years and now getting recognition for the efforts
God when he shuts one door he opens many more
My family proudly hold the honor outstanding contribution to pharma society at CMO Asia 🇸🇬 singapore

38023456_2178691365506916_280834219129700352_n 38036900_2178700298839356_1342673288593145856_n 38085187_2178688402173879_4072726979227418624_n 38124063_2178691528840233_6170388139010424832_n 38191997_2178688405507212_7669136166863503360_n cmo 2018 unnamed

//////////////Anthony Crasto, International award,   outstanding contribution to Pharma society, CMO ASIA,  31st July 2018 ,  Le Méridien,  Sentosa,  Singapore, 

FDA approves lusutrombopag for thrombocytopenia in adults with chronic liver disease

$
0
0

FDA approves lusutrombopag for thrombocytopenia in adults with chronic liver disease

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm615348.htm

synthesis………..https://newdrugapprovals.org/2015/08/20/lusutrombopag-oral-thrombopoietin-tpo-mimetic/

On July 31, 2018, the Food and Drug Administration approved lusutrombopag (Mulpleta, Shionogi Inc.) for thrombocytopenia in adults with chronic liver disease who are scheduled to undergo a medical or dental procedure.

Approval was based on two randomized, double-blind, placebo-controlled trials (L-PLUS 1 and L-PLUS 2, NCT02389621) involving 312 patients with chronic liver disease and severe thrombocytopenia who were undergoing an invasive procedure and had a platelet count less than 50 x 109/L. Patients were randomized 1:1 to receive 3 mg of lusutrombopag or placebo once daily for up to 7 days.

In L-PLUS 1, 78% of patients (38/49) receiving lusutrombopag required no platelet transfusion prior to the primary invasive procedure, compared with 13% (6/48) who received placebo (95% CI for treatment difference: 49%, 79%; p<0.0001). In L-PLUS 2, 65% (70/108) of patients who received lusutrombopag required no platelet transfusion prior to the primary invasive procedure or rescue therapy for bleeding from randomization through 7 days after the procedure, compared with 29% (31/107) receiving placebo (95% CI for treatment difference: 25%, 49%; p<0.0001).

The most common adverse reaction in ≥ 3% of patients was headache.

The recommended lusutrombopag dosage is 3 mg orally once daily with or without food for 7 days.

View full prescribing information for Mulpleta.

FDA granted this application priority review and fast track designation. A description of FDA expedited programs is in the Guidance for Industry: Expedited Programs for Serious Conditions-Drugs and Biologics.

Healthcare professionals should report all serious adverse events suspected to be associated with the use of any medicine and device to FDA’s MedWatch Reporting System or by calling 1-800-FDA-1088.

Follow the Oncology Center of Excellence on Twitter @FDAOncology.

Check out recent approvals at the OCE’s podcast, Drug Information Soundcast in Clinical Oncology.

Viewing all 2871 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>