Quantcast
Channel: New Drug Approvals
Viewing all 2871 articles
Browse latest View live

GCC 4401C , GC 2107 , Nokxaban for treating thrombosis

$
0
0

SCHEMBL1061234.png

GCC-4401C ( GC-2107), Nokxaban

In phase 1 for treating thrombosis

5-chloro-N-({(5S)-2-oxo-3-[4-(5,6-dihydro-4H-[1,2,4]triazin-1-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophene-2-carboxamide methanesulfonate

5-chloro-N-[[3-[4-(5,6-dihydro-2H-1,2,4-triazin-1-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl]methyl]thiophene-2-carboxamide

CB02-0133; GC-2107; GC4401; GCC-2107; GCC-4401; GCC-4401C; I Fxa – LegoChem Biosciences; LCB02-0133; Nokxaban

 

WO2010002115; LegoChem Bioscience INNOVATOR

 

Green Cross Corporation, Legochem Bioscience Ltd.

 

DEVELOPER

 

CAS NO FREE FORM

CAS 1159610-29-3, 159610-29-3, C18 H18 Cl N5 O3 S

2-​Thiophenecarboxamide​, 5-​chloro-​N-​[[(5S)​-​3-​[4-​(5,​6-​dihydro-​1,​2,​4-​triazin-​1(2H)​-​yl)​phenyl]​-​2-​oxo-​5-​oxazolidinyl]​methyl]​-

Molecular Formula: C18H18ClN5O3S Molecular Weight: 419.88522 g/mol

 

METHANE SULFONATE

CAS 1261138-12-8, C18 H18 Cl N5 O3 S . C H4 O3 S,

2-​Thiophenecarboxamide​, 5-​chloro-​N-​[[(5S)​-​3-​[4-​(5,​6-​dihydro-​1,​2,​4-​triazin-​1(2H)​-​yl)​phenyl]​-​2-​oxo-​5-​oxazolidinyl]​methyl]​-​, methanesulfonate (1:1)

 

HYDROCHLORIDE

CAS 1261138-08-2., C18 H18 Cl N5 O3 S . Cl H, 2-​Thiophenecarboxamide​, 5-​chloro-​N-​[[(5S)​-​3-​[4-​(5,​6-​dihydro-​1,​2,​4-​triazin-​1(2H)​-​yl)​phenyl]​-​2-​oxo-​5-​oxazolidinyl]​methyl]​-​, hydrochloride (1:1)

SUMMARY

  • 09 Jan 2015GC 2107 is available for licensing as of 09 Jan 2015. http://www.greencross.com
  • 01 May 2014Green Cross Corporation completes a phase I trial in Healthy volunteers in USA (NCT01954238)
  • 26 Sep 2013Green Cross initiates enrolment in a phase I trial in Healthy volunteers in USA (NCT01954238)

Used as factor Xa antagonist for treating coronary artery disease, inflammatory disease, myocardial infarction and thrombosis.

Green Cross Corp in collaboration with LegoChem Bioscience, is developing GCC-4401C ( phase I), for treating thrombosis including venous thromboembolism

Development and Market Objectives

Green Cross Corporation is developing an orally available direct Factor Xa inhibitor, GCC-4401C, which has shown an excellent safety profile during Phase I clinical study. After completion of Phase II and III studies for the prevention of venous thromboembolism (VTE) on hip or knee replacement surgery patients, we will explore additional indications for the treatment of acute coronary syndromes and the prevention of stroke in patients with atrial fibrillation.

Unmet Medical Need & Target Patients

/__DATA/Tasks/2013/9/녹십자1.jpg

GCC-4401C may prove its greatest impact in providing a much-needed and attractive alternative to warfarin in various indications. Prophylaxis of deep vein thrombosis (DVT), which may lead to pulmonary embolism in patients undergoing hip or knee arthroplasty, is considered to be a primary unmet medical need. It is the most common cause for rehospitalisation in this patient group. Each year in the United States, between 350,000 and 600,000 people experience a blood clot in the legs or in the lungs. The US and European hip and knee implant markets are the two largest, accounting for nearly 80 percent of total procedures conducted worldwide. The 2005 revenues for hip and knee implants in the US and Europe were $6.5 billion.  Demand driven by an aging population and an increasing number of younger patients are contributing to the continuous growth of hip and knee replacement procedures.

Thromboembolism involving arterial or venous circulation is a common cause of morbidity and mortality. As an anticoagulation therapy, heparin and Vitamin K antagonists (VKAs) such as warfarin have been used in clinical settings for more than 50 years, but both are associated with several limitations requiring frequent coagulation monitoring due to unpredictable effects of anticoagulant .  Therefore, there is an urgent need for novel, oral agents with a predictable anticoagulant action. The greatest unmet medical need in anticoagulation therapy is to find a replacement for VKAs for long-term therapy, particularly stroke prevention in patients with atrial fibrillation (a heart rhythm disorder).  Recently, Factor Xa has emerged as an attractive target for novel anticoagulants and a number of Factor Xa inhibitors are currently under development as oral anticoagulants for long-term use.
A major unmet medical need is for direct FXa inhibitors that are simpler to administer than VKAs, with fewer strokes and less intracranial bleeding compared with warfarin and less bleeding yet similar or better efficacy with a lower-dose regimen. In addition, the availability of simple, fixed-dose, unmonitored therapies should increase the use of direct FXa inhibitor therapy in patients with atrial fibrillation at risk for stroke.

Status

Phase I Clinical Study

To investigate the safety and tolerability of single doses of GCC-4401C in healthy male subjects, a Phase Ia study (GCC-4401C-101) was recently conducted at Quintiles in the United States under the conditions of randomized, double-blind, placebo-controlled, and single ascending dose. Forty eight healthy male subjects were enrolled in 6 cohorts and administered at 6 dose-escalation levels up to 80 mg/subject. GCC-4401C was well-tolerated without any significant adverse events, and was detected in blood plasma dose-proportionally across the dose range of 2.5 mg to 80 mg per patient. The pharmacodynamic variables were also statistically correlated with GCC-4401C plasma concentrations.
We plan to characterize the safety, tolerability, pharmacokinetics and pharmacodynamics of multiple doses of GCC-4401C in healthy male subjects based on the safety margins of the SAD study. An appropriate dose and dosing regimen of oral GCC-4401C from subsequent clinical trials on VTE patients are expected to be identified. The Phase 1b study will be completed with Global CRO in the US in 3Q, 2014.

Intellectual Property

Material patent for GCC-4401C, covering a wide range of chemical structures, was awarded in early 2008 within S. Korea, followed by its production method patent in early 2011. Moreover, patent applications for both material and production method, are in progress in 21 and 5 overseas countries including the US, respectively.
–          KR811865 : Pyrimidinone derivatives or pyridazinone derivatives for inhibition of factor VIIa activity
–          KR109594 : FXa inhibitors with cyclic amidines as P4 subunit, processes for their preparations, and pharmaceutical compositions and derivatives thereof
–          KR898361 : FXa inhibitors with cyclic amidoxime or cyclic amidrazone as P4 subunit, processes for their preparations, and pharmaceutical compositions and derivatives thereof
–          KR1037051 : Method for preparing of (S)-5-chloro-N-((3-(4-(5,6-dihydro-4H-1,2,4-oxadiazin-3-yl)phenyl)-2-oxooxazolidin-5-yl)methyl)thiophene-2-carboxamide derivatives
–          KR1037052 : Method for preparing 5-chloro-N-(((5S)-2-oxo-3-(4-(5,6-dihydro-1,2,4-triazin-1(4H)-yl)phenyl)-1,3-oxazolidin-5-yl)methyl)thiophen-2-carboxamide derivatives, and their intermediates
–          PCT/KR2010/004420 : Method for preparing (S)-5-chloro-N-((3-(4-(5,6-dihydro-4H-1,2,4-oxadiazin-3-yl)phenyl)-2-oxooxazolidin-5-yl)methyl)thiophene-2-carboxamide derivatives
–          PCT/KR2010/004421 : Method for preparing 5-chloro-N-({(5S)-2-oxo-3-[4-(5,6-dihydro-4H-[1,2,4]triazin-1-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophene-2-carboxamide derivative and intermediate used therein

Competitive Advantages

/__DATA/Tasks/2013/9/녹십자2.jpg

GCC-4401C has been specifically designed for chronic, once-a-day treatment. It has a half-life that supports true, once-daily dosing and a low peak-to-trough drug concentration ratio that minimizes anticoagulant variability. Since GCC-4401C has an excellent aqueous solubility, there has been potential for the development of both po and iv formulations. Data from comparative efficacy studies in animals have also demonstrated the superiority of GCC-4401C against other direct FXa inhibitors with less bleeding effects. From the recent Phase Ia clinical study, GCC-4401C did not show any significant sign of adverse events. PK parameters and PD markers were predictable dose-proportionally across the all dose ranges. GCC-4401C is expected to show excellent safety profiles, less bleeding and less liver toxicity through human clinical studies.

Contact & Company Overview

PATENT

WO 2016010178

GREEN CROSS CORPORATION [KR/KR]; 107, Ihyeon-ro 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 446-770 (KR).
LEGOCHEM BIOSCIENCES, INC. [KR/KR]; 8-26, Munpyeongseo-ro, Daedeok-gu, Daejeon 306-220 (KR)

The present invention relates to a novel crystalline form of 5-chloro-N-({(5S)-2-oxo-3-[4-(5,6-dihydro-4H-[1,2,4]triazin-1-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophene-2-carboxamide methanesulfonate and a pharmaceutical composition containing the same. The novel crystalline form of a compound according to the present invention exhibits excellent stability even in high-temperature and humidity environments, and thus can be favorably used to prevent or treat diseases, such as thrombosis, myocardial infarction, atherosclerosis, inflammation, stroke, angina pectoris, restenosis after angioplasty, and thromboembolism.

According to the present invention 5-chloro -N – ({(5 S) -2- oxo-3- [4- (5,6-dihydro the -4H- [1, 2, 4] triazine-1-yl) phenyl] -1, 3-oxazolidin-5-yl} methyl) thiophene-2-mid copy methane sulfonic acid salt (hereinafter referred to as a new crystal form has excellent solubility referred to) in “GCO4401C”, Ko Un and wet environments It is excellent in stability.

Novel crystalline forms of GCC-4401C of the present invention, the organic solvent under reduced pressure crystallization method, a cooling crystallization method or solvent-can be easily obtained by the anti-solvent crystallization process.

Ateumyeo GCC-4401C is used as a reaction raw material can be prepared according to the procedure described in PCT Publication No. W02011 / 005029 No., dissolving the starting compound in an organic solvent the semi-adding a solvent after filtration to determine the resulting mixture was cooled and then dried to give the novel crystalline form can be a compound according to the invention.

 

PATENT

http://www.google.com/patents/WO2011005029A2?cl=en

5-Chloro-N-( {(5S)-2-oxo-3-[4-(5,6-dihydro-4H-[ 1 ,2,4]triazin- 1-yl)phenyl]-l,3-oxazolidin-5-yl}-methyl)thiophene-2-carboxamide of formula (A) has been known as an inhibitor of blood coagulation factor Xa and used for treating and preventing thrombosis, myocardial infarction, arteriosclerosis, inflammation, stroke, angina pectoris, recurrent stricture after angioplasty, and thromboembolism such as intermittent claudication.

Korea Patent No. 2008-64178, whose application has been filed by the present invetors, discloses a use of the compound as an inhibitor of blood coagulation factor Xa and a preparation method thereof. The preparation method comprises the step of preparing a cyclic amidrazone starting from 4-nitroaniline, as shown in reaction scheme 1 :

Reaction Scheme 1

Specifically, the cyclic amidrazone (A) is prepared by the steps of: preparing the compound (B) using 4-nitroaniline; treating the compound (B) with a t-butoxycarbonyl amine protecting group to prepare the compound (C); introducing a nitroso group into the compound (C) using NaNO2, followed by reduction using zinc to prepare the compound (D); and treating the compound (D) successively with hydrochloric acid and an ortho-formate.

However, the above preparation method is complicated and gives a low yield of the compound (A) (e.g., a total yield of 9 %), and it also requires the use of a column chromatography purification step, which limits mass production of the cyclic amidrazone. In particular, the step for preparing the compound (D) from the compound (C) is required to use a harmful heavy metal-containg materal such as zinc amalgam which gives an unsatisfactorily low yield, and the isolation step of the compound (D) does not proceed easily.

 

Reaction Scheme 2

 

Reaction Scheme 3

 

Example 1: Preparation of Ethyl formimidate hydrochloride

To a solution of benzoyl chloride (1212 g, 8.62 mol, 1 eq) in anhydrous ether (5.8 L) was added dropwise a solution of formamide (388 g, 8.62 mol, 1 eq) in EtOH (396 g, 8.60 mol, 0.998 eq) at 0 °C for lhr. The mixture thus obtained was stirred at 0 °C for 30min. The solid was filtered off, washed with ether (3 L) and EA (3 L). The solid was dried under high vacuum.

Yield : 625 g (66%)

Example 1: 5-chloro-N-({(5S)-2-oxo-3-[(5,6-dihydro-lH-[l,2,4]triazin-4-yl)phenyl]-l,3-oxazolidin-5-yl}-methyl)-2-thiophene carboxamide hydrochloride

Step 1: Preparation of 2- [N-(4-nitro-phenyl)-hydrazino]-ethanol

l-Fluoro-4-nitrobenzene (7.1 g, 50 mmol) was dissolved in CH3CN (70 ml), 2-hydroxyethylhyrazine (purity: 90 %, Aldrich, 5.0 g, 66 mmol) and K2CO3 (7.6 g, 55 mmol) were added thereto. The suspension thus obtained was stirred for 4 hrs with reflux. The resulting orange-colored suspension was concentrated under reduced pressure (reflux condenser, 10 torr, 40 °C) and ethylacetate (EA, 90 ml) and water (18 ml) were added thereto. The resulting mixture was stirred strongly at r.t. for 10 min. The organic layer was extracted and washed with the saturated brine (10 ml). The resulting solution was cooled to 10 °C and 48 % HBr solution (3.7 ml) was added thereto dropwise with stirring. The pale yellow colored solid thus obtained was filtered off and dried under high vacuum (1 torr, 40 “C) to obtain the title compound as an intermediate.

Yield: 7.1 g (51 %).

TLC : Rf= 0.62 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR (600 MHz, DMSO-J6) δ 8.17 (d, J = 9.0 Hz, 2H), 7.12 (d, J = 9.0 Hz, 2H), 3.82 (t, J= 5.4 Hz, 2H), 3.69 (t, J= 5.4 Hz, 2H)

LCMS: 198 (M+H+) (C8H11N3O3)

Step 2: Preparation of l-bromo-2-[N-(4-nitro-phenyl)-hydrazino] -ethane

The compound obtained in Step 1 (38.9 g, 0.140 mol) was suspended in anhydrous 1 ,2-dimethoxyethane (585 ml). The resultant suspension was cooled to 0 °C and PBr3 (15.9 ml, 0.168 mol) was added thereto dropwise for 30 min. The mixture thus obtained was stirred at 60 °C for 4 hrs. The pale yellow colored solution thus obtained was concentrated under reduced pressure (reflux condenser, 10 torr, 45 °C). The resultant residue (oil) was suspended with water (150 ml) and stirred. Aq. sat’d NaHCO3 solution (150 m) was added to the resultant suspension to be pH 4. The resulting mixture was stirred for 30 min to precipitate the pale yellow colored precipitates. The precipitates were filtered off and washed with water (100 ml). The resulting solid was mixed with water (100 ml), aq. sat’d NaHCO3 solution (70 ml) and CH2Cl2 (500 ml). The resulting mixture was stirred for 10 min and stood to separate organic and aqueous layers. The organic layer was dried over 20 g of MgSO4 and filtered off. The resulting filterate was concentrated under reduced pressure (reflux condenser, 10 torr, 40 °C) to obtain the title compound as a pale yellow solid.

Yield : 31.3 g (86 %)

TLC : Rf= 0.91 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR (600 MHz, CDCl3) δ 8.14 (d, J = 10.2 Hz, 2H), 6.92 (d, J= 10.2 Hz, 2H), 4.00 (t, J= 7.2 Hz, 2H), 3.65 (t, J= 7.2 Hz, 2H)

LCMS: 261 (M+H+) (C8H10BrN3O2)

Step 3: Preparation of 4-(5,6-dihydro-4H-[l,2,4]triazin-l-yl)-l-nitrobenzene

The compound obtained in Step 2 (13.0 g, 50.0 mmol) was completely dissolved in anhydrous 1,2-dimethoxyethane (200 ml) which is prepared by mixing 1,2-dimethoxyethane (purity: 99 %, Junsei Co. Ltd) with an desired amount of molecular sieve 4A and standing for 5 hrs or more with stirring at times. Ethyl formimidate HCl salt (5.8 g, 52.5 mmol) was added thereto. The suspension thus obtained was stirred at 25 °C for 10 min. Anhydrous sodium acetate (NaOAc, 8.6 g, 105 mmol) was added thereto and stirred for 15 hrs with reflux. The orange colored suspension thus obtained was concentrated under reduced pressure (10 torr, 50 “C). The orange colored residue thus obtained was mixed with IN HCl (140 ml), EA (50 ml) and hexane (100 ml), and stirred at r.t for 10 min. A small amount of insoluble suspended solids was remained in aqueous layer and filtered off. The resulting aqueous layer was washed with a mixture of EA (30 ml) and hexane (60 ml). 12 g of sodium carbonate was added to the resulting solution to be pH 8.5. The orange colored solid thus obtained was filtered off under reduced pressure, washed with water (15 ml) and dried under vacuum to obtain the title compound .

Yield : 7.7 g (75 %).

TLC : R/= 0.45 (EA/MeOH/AcOH = 20/1/0.5)

HPLC : R, = 8.65 (Gradient A), purity 91.1%

1H NMR (400 MHz, DMSO-^6) δ 8.03 (d, J= 9.6 Hz, 2H), 7.16 (d, J = 9.6 Hz, 2H), 7.12 (br s, IH), 7.01 (d, J= 4.0 Hz, 2H), 3.77 (t, J= 5.2 Hz, 2H), 3.43-3.40 (m, 2H)

LCMS: 207 (M+H+) (C9H10N4O2)

Step 4: Preparation of 4-(5,6-dihydro-4-t-butoxycarbonyl-[l,2,4]triazin-l-yl)-1-nitrobenzene

To the orange colored suspension prepared by suspending the compound obtained in Step 3 (12.4 g, 60 mmol) in tetrahydrofurane (THF, 200 ml), 4-dimethylaminopyridine (DMAP, 0.367 g, 3 mmol) and di-tert-butyl dicarbonate

(BoC2O, 19.6 g, 90 mmol) were added and stirred with reflux for 1.5 hrs. The yellow colored suspension thus obtained was concentrated under reduced pressure

(reflux condenser, 10 torr, 40 °C) to remove the solvent. The resulting yellow colored residue was completely dissolved in CH2Cl2 (700 ml) and washed with IN HCl (700 ml). The organic layer was extracted, dried over 25 g of MgSO4, and concentrated under reduced pressure (condenser, 10 torr, 40 °C). The resultant yellow colored residue was dissolved in cyclohexane (250 ml) and stirred strongly at r.t. for 30 min. The resulting mixture was concentrated under reduced pressure to obtain yellow colored solids. The solids were dried (1 torr, 50 °C ) to obtain a disried compound.

Yield: 15.6 g (85 %)

TLC : R/= 0.93 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR (600 MHz, DMSO-J6) δ 8.14 (d, J= 9.6 Hz, 2H), 7.62 (br s, IH), 7.30 (d, J = 9.6 Hz, 2H), 3.89 (br s, 2H), 3.79 (br s, 2H), 1.50 (s, 9H)

LCMS: 307 (M+H+) (C14H18N4O4)

Step 5: Preparation of 4-(5,6-dihydro-4-t-butoxycarbonyl-[l,2,4]triazin-l-yl)aniline

To the yellow colored suspension prepared by suspending the compound obtained in Step 4 (19.9 g; 65 mmol) in methanol (200 ml), 10 % palladium on carbon (4.0 g) was added. The resulting mixture was subjected to vacuum outgassing and stirred at r.t., for 2 hrs in the flask connected with hydrogen bollum. The resulting mixture was filtered through celite 545 under redued pressure to remove the palladium on carbon. The fϊlterate was concentrated under reduced pressure (reflux condenser, 10 torr, 40 °C). The resulting pale brown colored residue was dissolved in isopropylalcohol (140 ml) and refluxed to dissolve completely. The resulting solution was stood at 0 °C for 2 hrs to cool, stirred for 30 min and filtered off under redued pressure. The resulting ivory crystalline solid was dried in vacuo to obtain the title compound (15.8 g, 88 %).

TLC : Rf= 0.38 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR (400 MHz, DMSO-(I6) δ 7.34 (br s, IH), 6.91 (d, J = 12.0 Hz, 2H), 6.51 (d, J = 12.0 Hz, 2H), 6.64 (br s, 2H), 3.74 (br s, 2H), 3.41 (br s, 2H), 1.48 (s, 9H)

LCMS: 277 (M+H+) (C14H20N4O2)

Step 6: Preparation of N-(3-(5,6-dihydro-4-t-butoxycarbonyl-[l,2,4]triazin-l-yI)anilino-(2R)-2-hydroxypropyI)-5-chloro-2-thiophene carboxamide

The compound obtained in Step 5 (19.3 g, 70 mmol) and 5-chloro-N-(((S)-oxiran-2-yl)methyl)thiophene-2-carboxamide (19.1 g, 88 mmol) were suspended in isobutyl alcohol (350 ml) and stirred for 18 hrs with reflux. The dark blue colored solution thus obtained was concentrated under reduced pressure (reflux condenser, 10 torr, 50 °C). To the yellow solid residue thus obrained, ethylacetate (200 ml) was added and the resulting mixture was stirred at r.t. for 30 min and further stirred strongly at 0 °C for 30 min. The suspended solid thus obtained was filtered off under reduced pressure and dried in vaccum (1 torr, 50 °C ) to obtain the title compound as ivory crude.

Yield : 25.9 g (75 %)

TLC : R/= 0.34 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR of a crude sample (600 MHz, DMSO-</6) δ 8.62 (t, J = 5.4 Hz, IH), 7.69 (d, J = 3.6 Hz, IH), 7.36 (br s, IH), 7.18 (d, J = 4.2 Hz, IH), 6.95 (d, J = 9.0 Hz, 2H), 6.54 (d, J = 9.0 Hz, 2H), 5.10 (t, J = 6.6 Hz, IH), 5.05 (d, J = 5.4 Hz, IH), 3.81-3.75 (m, 3H), 3.44 (br s, 2H), 3.37-3.34 (m, IH), 3.25-3.21 (m, IH), 3.08-3.04 (m, IH), 2.94-2.89 (m, IH), 1.48 (s, 9H)

LCMS: 494 (M+H+) (C22H28ClN5O4S)

Step 7: Preparation of 5-chloro-N-({(5S)-2-oxo-3-[(5,6-dihydro-4-t-butoxycarbonyl-[l,2,4]triazin-l-yl)phenyl]-l,3-oxazolidin-5-yI}-methyl)-2-thiophene carboxamide

The compound obtained in Step 6 (25.2 g, 51 mmol) was completely dissolved in THF (325 ml), and Ll’-carbonyldiimidazole (10.8 g, 66 mmol) and DMAP (0.31 mg, 2.6 mmol) were added thereto. The resulting mixture was stirred with reflux for 18 hrs. The resulting pale yellow colored suspension was cooled to r.t, concentrated under reduced pressure and dried in vacuo (1 torr, 50 °C) to obtain the title compound as an ivory solid.

Yield : 23.3 g (88 %)

TLC : R/= 0.75 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR (400 MHz, DMSO-J6) δ 8.97 (t, J = 5.4 Hz, IH), 7.69 (d, J= 4.2 Hz, IH), 7.43 (br s, IH), 7.41 (d, J = 9.0 Hz, 2H), 7.20 (d, J = 4.2 Hz, IH), 7.19 (d, J= 9.0 Hz, 2H), 4.82-4.77 (m, IH), 4.12 (t, J= 9.0 Hz, IH), 3.80-3.78 (m, 3H), 3.62 (br s, 2H), 3.59 (t, J= 6.0 Hz, 2H), 1.49 (s, 9H)

LCMS: 520 (M+H+) (C23H26ClN5O5S)

Step 8: Preparation of 5-chloro-N-({(5S)-2-oxo-3-[(5,6-dihydro-4H-[l,2,4]triazin-l-yl)phenyl]-l,3-oxazolidin-5-yl}-methyl)-2-thiophene

carboxamide hydrochloride

The compound obtained in Step 7 (16.1 g, 31 mmol) was completely

dissolved in THF (193 ml), 3N HCl (193 ml) was added thereto. The resulting solution was stirred with reflux for 1 hr. The white suspension thus obtained was cooled tq r.t, concentrated under reduced pressure and dried in vacuo (1 torr, 40 °C ) to obtain the title compound as a white solid.

Yield : 13.4 g (95 %)

TLC : R/= 0.82 (MC/MeOH/AcOH = 10/1/0.5)

HPLC : R, = 12.39 (Gradient A), purity 99.5%

1H NMR (600 MHz, OMSO-d6) δ 12.12 (br s, IH), 10.20 (br s, IH), 9.08

(t, J = 6.0 Hz, IH), 8.60 (d, J = 5.2 Hz, IH), 7.74 (d, J= 4.2 Hz, IH), 7.53 (d, J = 9.0 Hz, 2H), 7.20 (d, J= 4.2 Hz, IH), 7.13 (d, J= 9.0 Hz, 2H), 4.85-4.81 (m, IH),

4.15 (t, J = 8.8 Hz, IH), 3.85 (dd, J = 6.0, 9.2 Hz, IH), 3.66 (t, J = 4.8 Hz, 2H),

3.63-3.56 (m, 2H), 3.19 (br s, 2H)

LCMS: 420 (M+H+) (C18H18ClN5O3S)

Example 2: Preparation of 5-chloro-N-({(5S)-2-oxo-3-[(5,6-dihydro-4H-[l,2,4]triazin-l-yI)phenyl]-l,3-oxazolidin-5-yl}-methyI)-2-thiophene

carboxamide

The HCl salt obtained in Example 1 (6.9 g, 15 mmol) was completely dissolved in 33 % methanol aqueous solution (1.1 L) and heated to 50 °C while stirring. To the resulting colorlessness solution, 0.6M aq. Na2CO3 solution (25 ml) was added and the white suspension thus obtained was stood at 0 °C for 0.5 hr to cool. The white solid thus obtained was concentrated under reduced pressure, wished with H2O (150 ml) and dried in vacuo (1 torr, 40 “C) to obtain the title compound (yield: 5.5 g, 87 %). The title compound was dissolved in methanol (330 ml) and stirred with reflux. The pale yellow colored solution thus obtained was stood at 0 °C for 2 hrs to cool. The resulting white solid was concentrated under reduced pressure, washed with methanol (10 ml), and dried in vacuo (1 torr, 40 C) to obtain a crystal of the title compound (yield: 5.0 g, 80 %).

HPLC : R, = 12.37 (Gradient A), purity 99.7 %

1H NMR (400 MHz, DMSO-^6) δ 8.97 (t, J = 6.0 Hz, IH), 7.69 (d, J = 4.0 Hz, IH), 7.32 (d, J = 9.2 Hz, 2H), 7.20 (d, J = 4.0 Hz, IH), 7.12 (d, J = 9.2 Hz, 2H), 6.79 (d, J = 4.0 Hz, IH), 6.52 (br s, IH), 4.80-4.75 (m, IH), 4.10 (t, J = 8.8 Hz, IH), 3.77 (dd, J= 6.0, 9.2 Hz, IH), 3.58 (t, J= 5.6 Hz, 2H), 3.33 (s, 4H)

LCMS: 420 (M+H+) (C18H18ClN5O3S)

Example 3: Preparation of 5-chloro-N-({(5S)-2-oxo-3-[(5,6-dihydro-4H-[l,2,4]triazin-l-yl)phenyl]-l,3-oxazolidin-5-yI}-methyI)-2-thiophene carboxamide methane sulfonate

To the compound obtained in Example 2 (3.3 g, 7.9 mmol), a mixture solution of MeOH/CH2Cl2 (1/4 v/v, 70 ml) was added and stirred with reflux. The pale yellow colored solution thus obtained was cooled to 0 °C and methylsulfonic acid (0.56 ml, 8.6 mmol) was added thereto. The resulting mixture was concentrated under reduced pressure (reflux condenser, 10 torr, 40 °C) to obtain pale yellow foamy solid. To the resultant solid, absolute ethanol (20 ml) was added and the resulting mixture was stirred with reflux to dissolve solid clearly. The resulting solution was cooled to 0 °C to 2 hrs. The resulting white solid was concentrated under reduced pressure, washed with absolute EtOH (5 ml), and dried in vacuo (1 torr, 40 “C) to obtain a crystalline methane sulfonate.

Yield : 3.8 g (93 %)

HPLC : R, – 12.35 (Gradient A), purity 99.8%

1H NMR (400 MHz, DMSO-CZ6) δ 11.97 (br s, IH), 10.07 (br s, IH), 8.99

(t, J= 6.0 Hz, IH), 8.59 (U1 J= 6.0 Hz, IH), 7.70 (d, J= 4.0 Hz, IH), 7.53 (d, J =

9.2 Hz, 2H), 7.20 (d, J= 4.0 Hz, IH), 7.13 (d, J= 9.2 Hz, 2H), 4.86-4.80 (m, IH),

4.16 (t, J = 9.2 Hz, IH), 3.82 (dd, J = 6.0, 9.2 Hz, IH), 3.67 (m, 2H), 3.60 (t, J = 5.6 Hz, 2H), 3.20 (br s, 2H), 2.31 (s, 3H)

LCMS: 420 (M+H+)(C18H18ClN5O3S)

Example 4: (S)-5-chloro-N-((3-(4-(5,6-dihydro-l,2,4-triazin-l(4H)-yl)phenyI)-2-oxooxazolidin-5-yl)methyl)thiophene-2-carboxamide methane sulfonate

Step 1: Preparation of (2-[N-(4-nitro-phenyl)-hydrazinyl]-ethanol) hydrobromide

l-Flouro-4-nitrobenzene (428 g, 3.03 mol, Aldrich Fl 1204) was dissolved in CH3CN (4.3 L), and 2 -hydroxy ethylhyrazine (300 g, 3.94 mol, 1.3 eq, imported from China, >98 %) and K2CO3 (461 g, 3.34 mol, 1.1 eq, Aldrich

347825) were added thereto. The mixture thus obtained was stirred at 80 °C for

19 hrs. The mixture was cooled to r.t. and evaporated to remove solvent. The residue was dissolved with EA (1.5 L) and H2O (1 L). The organic layer was extracted and washed with H2O (500 mL) and brine (200 mL). The extracted

EA layer was cooled to 0 °C and 48 % HBr solution (360 mL, Aldrich 244260) was added thereto dropwise at 0 °C with stirring. The resultant mixture was stirred at 0 °C for 1 hr. The solid thus obtained was filtered off and washed with

EA (5 L). The obtained solid was dried under high vacuum to obtain the title compound.

Yield : 531 g (63 %)

TLC : Rf= 0.62 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR (400 MHz, OMSO-d6) δ 7.94 (d, J = 9.6 Hz, 2H), 7.12 (br s, 2H), 6.63
5.8 Hz, 2H) LCMS: 198 (M+H+) (C8H11N3O3)

Step 2: Preparation of l-bromo-2-[N-(4-nitro-phenyl)-hydrazino]-ethane

The compound obtained in Step 1 (531 g, 1.90 mol) was suspended in

anhydrous 1,2-dimethoxyethane (4.5 L). The resultant suspension was cooled to 0 °C and PBr3 (220 niL, 2.29 mol, 1.2 eq, Aldrich 256536) was added thereto dropwise at 0 °C . The mixture thus obtained was warmed up to r.t. and stirred at 6O 0C for l5 hrs.

The mixture was cooled to r.t., and filtered off to remove remained insoluble solid. The filter cake thus obtained was washed with 1,2- dimethoxyethane (700 mL) and the filtrate was concentrated in vacuo. The resultant residue was suspended with H2O (2.5 L), stirred and cooled to 0 °C . Aq. 2N NaOH solution (1.7 L) was added thereto at 0°C to neutralize the suspension mixture (pH 6-7). The solid was filtered off and washed with H2O (5 L). The filtered solid was air-dried for 5 hrs.

The air-dried solid was dissolved with CH2Cl2 (3 L), and aq. sat’d

NaHCO3 solution (1.5 L) and H2O (700 mL) were added thereto. The resultant

– mixture was stirred for 15 min and stood to separate organic and aqueous layers. Insoluble solid which was not dissolved in organic layer and H2O was remained in the mixture. The mixture was filtered off to remove insoluble solid and the filter cake was washed with CH2Cl2 (700 mL). The organic layer was extracted, dried over MgSO4, filtered off, and concentrated in vacuo. The resultant solid was dried under high vacuum to obtain the title compound.

Yield : 383 g (77% : When product was dissolved in CDCl3 to check the

1H NMR spectroscopy, insoluble solid was stilled remained in CDCl3)

TLC : Rf= 0.91 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR (400 MHz, CDCl3) δ 8.12 (d, J = 9.6 Hz, 2H), 6.92 (d, J = 9.2 Hz, 2H), 4.00 (t, J = 6.6 Hz, 2H), 3.65 (t, J = 6.6 Hz, 2H)

LCMS: 261 (M+H+) (C8H10BrN3O2)

Step 3: Preparation of 4-(5,6-dihydro-4H-[l,2,4]triazin-l-yl)-l-nitrobenzene

Ethyl formimidate HCI, NaOAc

1 ,2-dimethoxyethane

The compound obtained in Step 2 (384 g, 1.48 mol) was dissolved in anhydrous 1,2-dimethoxyethane (4 L) and ethyl formimidate HCl salt (322 g, 2.94 mol, 2 eq) was added thereto at r.t. The resultant mixture was stirred at r.t. for 30 min. NaOAc (364 g, 4.44 mol, 3.0 eq, Aldrich 110191) was added to the mixture and the mixture was stirred at 75 °C for 15 hrs.

The mixture was cooled to r.t. and evaporated to remove solvent. The resultant residue was suspended in EA (2 L) and 1,2-dimethoxyethane (I L). Aq.

3N HCl solution (2.5 L) was added to the suspension. Insoluble solid was remained in resultant mixture. The solid was filtered off two times to remove insoluble solid. Ether (3 L) was added to the filtrate to separate organic and aqueous layers effectively. Aqueous layer was separated and washed with mixed organic solution (EA (1 L) + Hexane (500 mL)). The combined organic layer should be kept to recover the product.

(The treatment of aqueous layer)

The aqueous layer was cooled to 0 °C and aq. 6N NaOH solution (2.2 L) was added thereto slowly to basify the H2O layer (pH ~ 9). The resultant suspension was stirred at r.t. for 12 hrs. The solid was filtered off and washed with H2O (3 L) and dried under high vacuum.

(The treatment of combined organic layer)

The combined organic layer was concentrated in vacuo. The resultant residue was acidified with aq. 3N HCl solution (500 mL). Filtration was carried out to remove insoluble solid. The filtrate (H2O layer) thus obtained was washed with ether (700 mL X 2). The aqueous layer was stirred and cooled to 0 °C . Aq. 5N NaOH solution (1 L) was added to the cooled aqueous layer to basify (pH ~9). The mixture thus obtained was stirred at r.t. for 12 hrs. The solid thus obtained was filtered off and washed with H2O (1.5 L). The solid was dried under high vacuum to obtain the title compound.

Yield : 187 g (62 %)

TLC : Rf= 0.45 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR (400 MHz, DMSO-</6) δ 7.99 (d, J = 9.6 Hz, 2H), 7.16 (d, J =

9.6 Hz, 2H), 7.09 (br s, IH), 6.97 (d, J = 3.6 Hz, 2H), 3.73 (t, J = 5.0 Hz, 2H), 3.45-3.46 (m, 2H)

LCMS: 207 (M+H+) (C9H10N4O2)

Step 4: Preparation of 4-(5,6-dihydro-4-t-butoxycarbonyl-[l,2,4]triazin-l-yl)- 1-nitrobenzene

The compound obtained in Step 3 (187g, 0.907 mol) was suspended in anhydrous THF (2.2 L), and BoC2O (30Og, 1.36 mol, 1.5 eq, Aldrich 205249) and DMAP (6g, 0.045 mol, 0.05 eq, Aldrich 107700) were added thereto. The mixture thus obtained was stirred at 65 °C for 5 hrs.

The mixture was cooled to 0 °C . MeOH (1.5 L) was added to the mixture at 0 °C and stirred at 0 °C for 1 hr. The solid thus obtained was filtered off, washed with MeOH (750 niL) and dried under high vacuum.

Filtrate thus obtained was concentrated in vacuo. MeOH (1 L) was added to the resultant residue with stirring. The mixture thus obtained was stirred at r.t for 12 hrs. Solid thus obtained was filtered off, washed with MeOH (500 mL), and dried under high vacuum to obtain the title compound.

Yield : 182 g (65 %)

TLC : Rf= 0.93 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR (400 MHz, DMSO-J6) δ 8.17 (d, J= 9.6 Hz, 2H), 7.57 (br s, IH), 7.19 (d, J= 9.6 Hz, 2H), 3.93-3.86 (m, 2H), 3.83-3.745 (m, 2H), 1.56 (s, 9H)

LCMS: 307 (M+H+) (C14H18N4O4)

Step 5: Preparation of 4-(5,6-dihydro-4-t-butoxycarbonyl-[l,2,4]triazin-l-yl)aniline

The compound obtained in Step 4 (134 g, 438 mmol) was suspended in

MeOH (1.3 L) at r.t., and NH4Cl (12 g, 0.5 eq, Aldrich A4514) and Zn (15 g, 0.5 eq, Aldrich 209988) were added 6 times at intervals of 15 min at r.t. (total amounts Of NH4Cl = 73 g (1356 mmol, 3.1 eq) and total amounts of Zn = 88 g

(1356 mmol, 3.1 eq))

Temperature of the resultant mixture was risen gradually to 65 °C and the mixture was stirred at 65 °C for 12 hrs. The mixture was cooled to 40 °C and NH4Cl (12 g, 0.5 eq, Aldrich A4514) and Zn (15 g, 0.5 eq, Aldrich 209988) were added thereto. Temperature of the resultant mixture was risen gradually to 65 °C and the mixture was stirred at 65 “C for 1 hr.

The mixture was cooled to r.t. and filtered off through celite pad. The filter cake was washed with MeOH (700 mL) and THF (700 mL) and the filtrate was concentrated. The crude product thus obtained was dried under high vacuum and used without further purification.

Yield : 124 g (quantitative)

TLC : Rf= 0.38 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR (400 MHz, OMSO-d6) δ 7.31 (br s, IH), 6.86 (d, J = 12.0 Hz, 2H), 6.48 (d, J = 12.0 Hz, 2H), 4.60 (s, 2H), 3.71 (br s, 2H), 3.38 (br s, 2H), 1.44 (s, 9H)

LCMS: 277 (M+H+) (C14H20N4O2)

Step 6: Preparation of N-(3-(5,6-dihydro-4-t-butoxycarbonyl-[l,2,4]triazin-l-yl)anilino-(2R)-2-hydroxypropyl)-5-chloro-2-thiophene carboxamide

The compound obtained in Step 5 (120 g, 435 mmol) and 5-chloro-N-(((S)-oxiran-2-yl)methyl)thiophene-2-carboxamide (123 g, 566 mmol, 1.3 eq, purchased from RStech (Daejeon, Korea) was suspended in absolute EtOH (1450 mL). The mixture thus obtained was stirred at 85 °C for 16 hrs. The mixture was cooled to r.t. and evaporated in vacuo to remove solvent. The resultant residue was dried under high vacuum for 18 hrs. The dried solid was suspended in EA (2 L). The suspension thus obtained was stirred at r.t. for 1 hr. The solid thus obtained was filtered off and washed with EA (500 mL) and ether (500 mL). The filtered solid was dried under high vacuum to obtain the title compound.

Aniline (starting material), epoxide, over-reacted by product were contained in crude product.

Yield : 158 g (74 %)

TLC : Rf= 0.34 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR of a crude sample (400 MHz, DMSO-^6) δ 8.57 (t, J = 5.4 Hz,

IH), 7.65 (d, J = 3.6 Hz, IH), 7.32 (br s, IH), 7.14 (d, J = 4.2 Hz, IH), 6.90 (d, J

= 9.0 Hz, 2H), 6.51 (d, J = 9.0 Hz, 2H), 5.04 (t, J = 6.6 Hz, IH), 5.00 (d, J = 5.4 Hz, IH), 3.87-3.65 (m, 3H), 3.40 (br s, 2H), 3.37-3.34 (m, IH), 3.25-3.21 (m, IH),

3.17-2.96 (m, IH), 2.94-2.84 (m, IH), 1.44 (s, 9H)

LCMS: 494 (M+H+) (C22H28ClN5O4S)

Step 7: Preparation of 5-chloro-N-({(5S)-2-oxo-3-[(5,6-dihydro-4-t-butoxycarbonyl-[l,2,4]triazin-l-yl)phenyl]-l,3-oxazolidin-5-yl}-methyl)-2-thiophene carboxamide

The compound obtained in Step 6 (158 g, 320 mmol) was suspended in

THF (1000 niL), and 1,1-carbonyldiimidazole (68 g, 416 mmol, 1.3 eq, Aldrich 115533) and DMAP (2 g, 16 mmol, 0.05 eq, Aldrich 107700) were added thereto. The mixture thus obtained was stirred at 75 °C for 3 hrs, cooled to r.t, and evaporated in vacuo to remove solvent. The resultant residue was suspended in EtOH (1300 mL). The suspension thus obtained was stirred at 0 °C for 1 hr. The solid thus produced was filtered off and washed with cold EtOH (800 mL) and cold MeOH (300 mL). The filtered solid was dried under high vacuum to obtain the title compound.

Yield : 101 g (61 %)

TLC : R/= 0.75 (EA/MeOH/AcOH = 20/1/0.5)

1H NMR (400 MHz, DMSO-^6) δ 8.93 (t, J= 5.4 Hz, IH), 7.66 (d, J= 4.2 Hz, IH), 7.43-7.33 (m, 3H),7.29-7.12 (m, 3H), 4.82-4.73 (m, IH), 4.09 (t, J = 9.0 Hz, IH), 3.82-3.70 (m, 3H), 3.65-3.52 (m, 4H), 1.45 (s, 9H)

LCMS: 520 (M+H+) (C23H26ClN5O5S)

Step 8: Preparation of 5-chloro-N-({(5S)-2-oxo-3-[(5,6-dihydro-4H-[l,2,4]triazin-l-yl)phenyl]-l,3-oxazolidin-5-yl}-methyl)-2-thiophene

carboxamide hydrochloride

The compound obtained in Step 7 (101 g, 194 mmol) was suspended in aq.

3N HCl solution (1.1 L) and THF (1.1 L), and stirred at 80 “C for 3 hrs. The mixture thus obtained was cooled to r.t. The solid thus produced was filtered off, washed with THF (700 mL) and dried under high vacuum to obtain the title compound.

Yield : 75 g (85 %)

TLC : Rf= 0.82 (MC/MeOH/AcOH = 10/1/0.5)

1H NMR (400 MHz, DMSO-J6) δ 12.12 (br s, IH), 10.32 (br s, IH), 9.13

(t, J = 6.0 Hz, IH), 8.57 (d, J= 5.2 Hz, IH), 7.75 (d, J = 4.2 Hz, IH), 7.49 (d, J =

9.0 Hz, 2H), 7.15 (d, J= 4.2 Hz, IH), 7.09 (d, J= 9.0 Hz, 2H), 4.85-4.74 (m, IH), 4.11 (t, J = 8.8 Hz, IH), 3.85 (dd, J = 6.0, 9.2 Hz, IH), 3.62 (t, J = 4.8 Hz, 2H),

3.59-3.49 (m, 2H), 3.15 (br s,2H)

LCMS: 420 (M+H+) (C18H18ClN5O3)

Example 5: Preparation of 5-chloro-N-({(5S)-2-oxo-3-[(5,6-dihydro-4H-[l,2,4]triazin-l^yl)phenyl]-l,3-oxazolidin-5-yl}-methyl)-2-thiophene

carboxamide

The compound obtained in Example 4 (20 g, 43.8 mmol) was suspended in MeOH/H2O (1/2 wt/wt, 3.2 L) and stirred at 100 °C until the compound obtained in Example 4 was dissolved clearly. 0.6M aq. Na2CO3 solution (75 mL) was added thereto. The mixture thus obtained was stood at 0 °C for 2 hrs. The solid thus produced was filtered off, washed with H2O (400 mL) and dried

under high vacuum to obtain the title compound.

Yield : 17 g (93 %)

1H NMR (400 MHz, DMSO-J6) δ 8.93 (t, J = 6.0 Hz, IH), 7.66 (d, J = 4.0 Hz, IH), 7.29 (d, J = 9.2 Hz, 2H), 7.16 (d, J = 4.0 Hz, IH), 7.08 (d, J = 9.2 Hz, 2H), 6.76 (d, J = 4.0 Hz, IH), 6.48 (br s, IH), 4.78-4.69 (m, IH), 4.07 (t, J = 8.8 Hz, IH), 3.74 (dd, J = 6.0, 9.2 Hz, IH), 3.54 (t, J = 5.6 Hz, 2H), 3.38 (s, 4H)

LCMS: 420 (M+H+) (C18H18ClN5O3)

Example 6: Preparation of 5-chIoro-N-({(5S)-2-oxo-3-[(5,6-dihydro-4H-[l,2,4]triazin-l-yl)phenyI]-l,3-oxazolidin-5-yl}-methyl)-2-thiophene

carboxamide methane sulfonate

The compound obtained in Example 5 (16.7 g, 39.8 mmol) was suspended in MeOH/CH2Cl2 (1/4 v/v, 350 mL) and stirred at 50 °C until the compound obtained in Example 5 was dissolved clearly. The mixture thus obtained was cooled to 0 °C and methylsulfonic acid (2.9 mL, 43.8 mmol, 1.3 eq, Aldrich 471356) was added thereto at 0 °C . The resulting mixture was evaporated in vacuo to remove solvent. The resultant solid was suspended in absolute EtOH (100 mL) and the suspension was stirred at 90 °C to dissolve solid clearly. The resulting mixture was cooled to 0 °C and stirred at 0 °C for 2 hrs. The solid thus produced was filtered off, washed with absolute EtOH (100 mL), and dried under high vacuum to obtain the title compound.

Yield : 18.4 g (89.7 %)

1H NMR (400 MHz, DMSO-J6) δ 11.93 (br s, IH), 10.03 (br s, IH), 8.94 (t, J = 6.0 Hz, IH), 8.55 (d, J = 6.0 Hz, IH), 7.66 (d, J = 4.0 Hz, IH), 7.49 (d, J = 9.2 Hz, 2H), 7.16 (d, J = 4.0 Hz, IH), 7.08 (d, J = 9.2 Hz, 2H), 4.93-4.87 (m, IH), 4.10 (t, J = 9.2 Hz, IH), 3.77 (dd, J = 6.0, 9.2 Hz, IH), 3.63 (m, 2H), 3.57 (t, J = 5.6 Hz, 2H), 3.16 (br s, 2H), 2.28 (s, 3H)

LCMS: 420 (M+H+) (C18H18ClN5O3)

 

 

PATENT

WO2010002115

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2010002115

 

[Reaction Scheme 1] [96] A., O

NCONH2 + &J\ – NC NC- boc IPA, reflux O*B£.H. .κ> boc DMAP boc 2

Example 10: Preparation of compound 109

Compound 15a (450 mg, 0.88 mmol) obtained in Manufacturing Example 3 was dissolved in dichloromethane (10 mL), to which HCl (4 M 1,4-dioxane solution) (10 mL) was added, followed by stirring at room temperature for 1 hour. The reactant was concentrated under reduced pressure and dried to give light yellow solid compound (425 mg, 0.88 mmol, 100%). This compound (392 mg, 0.81 mmol) was dissolved in acetic acid (4 mL), to which trimethylorthoformate (2 mL) was added, followed by reflux with stirring. 10 hours later, after solvent was evaporated all, column chromatography (dichlorome thane/me thanol(v/v) 20/1 → 12/1) was performed to give the title compound 109 as a light yellow solid (215 mg, 5.12 mmol, 63 %).

1H NMR (400 MHz, CDCl3) δ 7.35 (d, J = 9.2 Hz, 2H), 7.33 (d, J = 4.4 Hz, IH), 7.14 (d, J = 9.2 Hz, 2H), 7.01 (t, J = 6.4 Hz, IH), 6.88 (s, IH), 6.85 (d, J = 4.4 Hz, IH), 4.87-4.79 (m, IH), 4.06 (t, J = 9 Hz, IH), 3.86 (ddd, J = 14.4 ,6, 3 Hz, IH), 3.81 (dd, J = 9, 6.4 Hz, IH), 3.69 (dt, J = 14.4, 6 Hz, IH), 3.62-3.58 (m, 2H), 3.55-3.51 (m, 2H); LCMS: 420 (M+H+) to Ci8H18ClN5O3S

 

REFERENCES

https://clinicaltrials.gov/ct2/show/NCT01954238

SEE EARLIER MOLECULE   LCB01-0371…..http://newdrugapprovals.org/2014/03/31/lcb01-0371-new-oxazolidinone-has-improved-activity-against-gram-positive-pathogens/

////////////////phase 1, Green Cross Corp,  LegoChem Bioscience, GCC 4401C, thrombosis, venous thromboembolism, GC 2107, CB02-0133, GC-2107, GC4401, GCC-2107, GCC-4401, GCC-4401C, I Fxa – LegoChem Biosciences, LCB02-0133, Nokxaban

O=C(NC[C@H]3CN(c1ccc(cc1)N2CCNC=N2)C(=O)O3)c4ccc(Cl)s4.CS(=O)(=O)O   METHANE SULFONATE

O=C(NC[C@H]3CN(c1ccc(cc1)N2CCNC=N2)C(=O)O3)c4ccc(Cl)s4      FREE FORM

C1CN(NC=N1)C2=CC=C(C=C2)N3CC(OC3=O)CNC(=O)C4=CC=C(S4)Cl


Filed under: PHASE1 Tagged: CB02-0133, GC 2107, GC4401, GCC 4401C, GCC-2107, GCC-4401, Green Cross Corp, I Fxa - LegoChem Biosciences, LCB02-0133, LegoChem Bioscience, Nokxaban, PHASE 1, thrombosis, venous thromboembolism

Fresolimumab

$
0
0

Fresolimumab
GC 1008, GC1008
UNII-375142VBIA

cas 948564-73-6

Structure

  • immunoglobulin G4, anti-(human transforming growth factors beta-1, beta-2 (G-TSF or cetermin) and beta-3), human monoclonal GC-1008 γ4 heavy chain (134-215′)-disulfide with human monoclonal GC-1008 κ light chain, dimer (226-226”:229-229”)-bisdisulfide
  • immunoglobulin G4, anti-(transforming growth factor β) (human monoclonal GC-1008 heavy chain), disulfide with human monoclonal GC-1008 light chain, dimer

For Idiopathic Pulmonary Fibrosis, Focal Segmental Glomerulosclerosis,and Cancer

An anti-TGF-beta antibody in phase I clinical trials (2011) for treatment-resistant primary focal segmental glomerulosclerosis.

A pan-specific, recombinant, fully human monoclonal antibody directed against human transforming growth factor (TGF) -beta 1, 2 and 3 with potential antineoplastic activity. Fresolimumab binds to and inhibits the activity of all isoforms of TGF-beta, which may result in the inhibition of tumor cell growth, angiogenesis, and migration. TGF-beta, a cytokine often over-expressed in various malignancies, may play an important role in promoting the growth, progression, and migration of tumor cells.

 

Fresolimumab (GC1008) is a human monoclonal antibody[1] and an immunomodulator. It is intended for the treatment of idiopathic pulmonary fibrosis (IPF), focal segmental glomerulosclerosis, and cancer[2][3] (kidney cancer and melanoma).

It binds to and inhibits all isoforms of the protein transforming growth factor beta (TGF-β).[2]

History

Fresolimumab was discovered by Cambridge Antibody Technology (CAT) scientists[4] and was one of a pair of candidate drugs that were identified for the treatment of the fatal condition scleroderma. CAT chose to co-develop the two drugs metelimumab (CAT-192) and fresolimumab with Genzyme. During early development, around 2004, CAT decided to drop development of metelimumab in favour of fresolimumab.[5]

In February 2011 Sanofi-Aventis agreed to buy Genzyme for US$ 20.1 billion.[6]

As of June 2011 the drug was being tested in humans (clinical trials) against IPF, renal disease, and cancer.[7][8] On 13 August 2012, Genzyme applied to begin a Phase 2 clinical trial in primary focal segmental glomerulosclerosis[9] comparing fresolimumab versus placebo.

As of July 2014, Sanofi-Aventis continue to list fresolimumab in their research and development portfolio under Phase II development.[10]

http://ryo1m.cocolog-nifty.com/photos/uncategorized/2014/05/13/igan_cjasn02.jpg

 

 

References

 

1 WHO Drug Information

2 National Cancer Institute: Fresolimumab

 

 

Fresolimumab
Monoclonal antibody
Type Whole antibody
Source Human
Target TGF beta 1, 2 and 3
Clinical data
Legal status
  • Investigational
Identifiers
CAS Number 948564-73-6 
ATC code None
ChemSpider none
KEGG D09620 Yes
Chemical data
Formula C6392H9926N1698O2026S44
Molar mass 144.4 kDa

////////////

 

 


Filed under: ANTIBODIES, Biosimilar drugs, Monoclonal antibody, PHASE 1, PHASE1, Uncategorized Tagged: antibodies, biosimilars, Fresolimumab, GC 1008, Monoclonal Antibodies

5-Bromo-1-methyl-1H-imidazole-4-carbonitrile

New TRPV1 Antagonist From Neurogen Corporation

$
0
0

SCHEMBL908261.png

MK ? NGD?

MK 2295; NGD 8243 may be???????

CAS 878811-00-8 FREE FORM

Molecular Formula: C27H31FN6O2
Molecular Weight: 490.572443 g/mol

6-[(3R)-4-[6-(4-fluorophenyl)-2-[(2R)-2-methylpyrrolidin-1-yl]pyrimidin-4-yl]-3-methylpiperazin-1-yl]-5-methylpyridine-3-carboxylic acid

6-{4-[6-(4-Fluoro-phenyl)-2-(2-methyl-pyrrolidin-1-yl)-pyrimidin-4-yl]-3-(R)-methyl-piperazin-1-yl}-5-methyl-nicotinic acid

3-​Pyridinecarboxylic acid, 6-​[(3R)​-​4-​[6-​(4-​fluorophenyl)​-​2-​[(2R)​-​2-​methyl-​1-​pyrrolidinyl]​-​4-​pyrimidinyl]​-​3-​methyl-​1-​piperazinyl]​-​5-​methyl-

Neurogen Corp  INNOVATOR

MESYLATE

CAS 1855897-95-8

6-((R)-4-(6-(4-Fluorophenyl)-2-((R)-2-methylpyrrolidin-1-yl)pyrimidin-4-yl)-3-methylpiperazin-1-yl)-5-methylnicotinic acid methanesulfonic acid salt

white solid. 1H NMR (CD3OD, 400 MHz) δ 1.37 (d, 3H, J= 6.4 Hz), 1.48 (d, 3H, J = 6.7 Hz), 1.84 (m, 1H), 2.09 (m, 1H), 2.17–2.25 (m, 2H), 2.42 (s, 3H), 2.66 (s, 3H), 3.10 (dt, 1H, J = 12.3 and 3.3 Hz), 3.28 (dd, 1H, J = 13.1 and 3.7 Hz), 3.65–3.72 (m, 3H), 3.78 (m, 1H), 3.87 (m, 1H), 4.49 (m, 1H), 4.63 (m, 3H), 4.96 (br m, 1H), 6.61 (s, 1H), 7.32 (m, 2H), 7.82 (m, 2H), 8.05 (m, 1H), 8.69 (d, 1H, J = 1.9 Hz);

13C NMR (CD3OD, 125 MHz) δ 19.4, 24.5, 33.5, 39.6, 41.5, 48.6, 50.0, 50.9, 54.1, 56.9, 94.8, 117.3 (d, J = 22.5 Hz), 122.1, 125.0, 130.1 (d, J = 3.3 Hz), 131.8 (d, J = 8.9 Hz), 142.1, 148.7, 153.1, 153.3, 162.4, 165.4, 166.4, (d, J = 251.3 Hz), 168.8;

19F NMR (CD3OD, 470 MHz) δ −108.6.

Anal. Calcd For C28H35FN6O5S: C, 57.32; H, 6.01; N, 14.32. Found: C, 57.34; H, 6.13; N, 14.29.

 

Activated by a wide range of stimuli such as capsaicin, acid, or heat, the transient receptor potential vanilloid-1 (TRPV1) has been identified as a potential treatment for chronic pain.TRPV1 is a highly characterized member of the TRP cation channel family believed to be involved in a number of important biological roles and plays a role in the transmission of pain.TRPV1 activation inhibits the transition of pain signals from the periphery to the central nervous system (CNS), leading to the possible development of analgesic and anti-inflammatory agents. TRPV1 antagonists have also been evaluated in multiple clinical trials where hyperthermic effects seen preclinically are also observed in humans

 

TRPV1

TRPV1

 

 

 

PATENT

http://www.google.com.na/patents/US20110003813

6-{4-[6-(4-Fluoro-phenyl)-2-(2-methyl-pyrrolidin-1-yl)-pyrimidin-4-yl]-3-(R)-methyl-piperazin-1-yl}-5-methyl-nicotinic acid 1. 1-(5-Bromo-3-methyl-pyridin-2-yl)-3-(R)-methyl-piperazine

  • Heat a solution of 2,5-dibromo-3-methyl-pyridine (Chontech Inc., Waterford, Conn.) (2.0 g, 7.97 mmol), (R)-2-methyl-piperazine (ChemPacific Corp., Baltimore, Md.; 3.2 g, 31.9 mmol) in DMA at 130° C. for 16 h. Partition the reaction mixture between water and EtOAc. Wash the EtOAc layer with water (1×) and brine (1×), dry (Na2SO4) and concentrate under reduced pressure to give 1-(5-bromo-3-methyl-pyridin-2-yl)-3-(R)-methyl-piperazine as a solid.

2. 2,4-dichloro-6-(4-fluorophenyl)pyrimidine

  • Dissolve 4-fluorobromobenzene (8.75 g, 0.05 moles) in anhydrous ether (80 mL) under nitrogen atmosphere and cool to −78° C. Add dropwise 1.6 M n-BuLi (34 mL, 0.055 moles) and stir at −78° C. for 45 min. Dissolve 2,4-dichloropyrimidine (7.45 g, 0.05 moles) in Et2O (100 mL) and add dropwise to the reaction mixture. Warm the reaction mixture to −30° C. and stir at this temperature for 30 min followed by 0° C. for 30 min. Quench the reaction mixture with AcOH (3.15 mL, 0.055 moles) and water (0.5 mL, 0.027 moles) dissolved in THF (5.0 mL). Add dropwise a THF (40 mL) solution of DDQ (11.9 g, 0.053 moles) to the reaction mixture. Bring the reaction mixture to room temperature and stir at room temperature for 30 min. Cool the reaction mixture to 0° C., add 3.0 N aq. NaOH (35 mL) and stir for 30 min. Decant the organic layer from the reaction mixture and wash the brown solid with Et2O (3×100 mL). Combine the organic layers, wash several times with saturated NaCl solution and dry with MgSO4. Filter and evaporate under vacuum to afford a brown colored solid. Purify by flash column chromatography using 5% EtOAc/hexane to afford the title product as a white solid.

3. 4-[4-(5-Bromo-3-methyl-pyridin-2-yl)-2-(R)-methyl-piperazin-1-yl]-2-chloro-6-(4-fluoro-phenyl)-pyrimidine

  • Heat a mixture of 2,4-dichloro-6-(4-fluoro-phenyl)-pyrimidine (6.0 g, 24.7 mmol), 1-(5-bromo-3-methyl-pyridin-2-yl)-3-(R)-methyl-piperazine (7.0 g, 25.9 mmol) and K2CO3 (6.8 g, 49.4 mmol) in DMA at 60° C. for 16 h. Partition the mixture between EtOAc and water, dry (Na2SO4) the organic layer and concentrate under reduced pressure. Purify with flash silica gel column eluting with 15% EtOAc/hexanes. Concentrate under reduced pressure to give the title compound.

4. 4-[4-(5-Bromo-3-methyl-pyridin-2-yl)-2-(R)-methyl-piperazin-1-yl]-6-(4-fluoro-phenyl)-2-(2-(R)-methyl-pyrrolidin-1-yl)-pyrimidine

  • Heat a mixture of 4-[4-(5-bromo-3-methyl-pyridin-2-yl)-2-(R)-methyl-piperazin-1-yl]-2-chloro-6-(4-fluoro-phenyl)-pyrimidine (7.7 g, 16.2 mmol), (R)-2-methylpyrrolidine hydrobromide [prepared essentially as described by Nijhuis et. al. (1989) J. Org. Chem. 54(1):209] (3.5 g, 21.1 mmol) and K2CO3 (5.1 g, 37.3 mmol) in DMA at 110° C. for 16 h. Partition the mixture between EtOAc and water, dry (Na2SO4) the organic layer and concentrate under reduced pressure. Purify with flash silica gel column eluting with 10% EtOAc/hexanes. Concentrate under reduced pressure to give the title compound.
  • 5. 6-{4-[6-(4-Fluoro-phenyl)-2-(2-methyl-pyrrolidin-1-yl)-pyrimidin-4-yl]-3-(R)-methyl-piperazin-1-yl}-5-methyl-nicotinonitrile
  • To a mixture of 4-[4-(5-bromo-3-methyl-pyridin-2-yl)-2-(R)-methyl-piperazin-1-yl]-6-(4-fluoro-phenyl)-2-(2-methyl-pyrrolidin-1-yl)-pyrimidine (700 mg, 1.33 mmol) and Zn(CN)2 (94 mg, 0.799 mmol) in DMF, add Pd(PPh3)4 (77 mg, 0.067 mmol). Purge the reaction mixture for 10 min with dry N2. Heat the stirring reaction mixture overnight at 80° C., cool to room temperature and partition between water and EtOAc. Dry the solution (Na2SO4), concentrate under reduced pressure. Purify the residue by flash column eluting with EtOAc-Hexanes (1:1) to afford the title compound as a white solid.
  • 6. 6-{4-[6-(4-Fluoro-phenyl)-2-(2-methyl-pyrrolidin-1-yl)-pyrimidin-4-yl]-3-(R)-methyl-piperazin-1-yl}-5-methyl-nicotinic acid
  • Heat a solution of 6-{4-[6-(4-fluoro-phenyl)-2-(2-methyl-pyrrolidin-1-yl)-pyrimidin-4-yl]-3-(R)-methyl-piperazin-1-yl}-5-methyl-nicotinonitrile (100 mg, 0.212 mmol) in 12 M HCl for 3 hours at 90° C. Concentrate the mixture under reduced pressure. Add a small amount of water, adjust the pH to 6-7, and collect the resulting white precipitate to afford the title compound as a off-white solid. 1H NMR (300 MHz, DMSO-d6): δ 1.24 (m, 6H, 2×CH3)); 1.61 (m, 1H,); 1.84 (m, 1H); 1.98 (m, 2H); 2.34 (s, 3H, Ar—CH3); 2.91 (m, 1H); 3.08 (m, 1H); 3.26 (m, 2H); 3.56 (m, 2H); 3.74 (m, 1H); 4.21 (m, 1H); 4.35 (m, 1H); 4.74 (m, 1H); 6.57 (s, 1H); 7.26 (m, 2H); 7.91 (d, 1H, J=3 Hz); 8.15 (m, 2H); 8.60 (d, 1H, J=3 Hz).

 

END…………………

MESYLATE NMR

STR1

1H NMR (CD3OD, 400 MHz) δ 1.37 (d, 3H, J= 6.4 Hz), 1.48 (d, 3H, J = 6.7 Hz), 1.84 (m, 1H), 2.09 (m, 1H), 2.17–2.25 (m, 2H), 2.42 (s, 3H), 2.66 (s, 3H), 3.10 (dt, 1H, J = 12.3 and 3.3 Hz), 3.28 (dd, 1H, J = 13.1 and 3.7 Hz), 3.65–3.72 (m, 3H), 3.78 (m, 1H), 3.87 (m, 1H), 4.49 (m, 1H), 4.63 (m, 3H), 4.96 (br m, 1H), 6.61 (s, 1H), 7.32 (m, 2H), 7.82 (m, 2H), 8.05 (m, 1H), 8.69 (d, 1H, J = 1.9 Hz);

 

STR1

13C NMR (CD3OD, 125 MHz) δ 19.4, 24.5, 33.5, 39.6, 41.5, 48.6, 50.0, 50.9, 54.1, 56.9, 94.8, 117.3 (d, J = 22.5 Hz), 122.1, 125.0, 130.1 (d, J = 3.3 Hz), 131.8 (d, J = 8.9 Hz), 142.1, 148.7, 153.1, 153.3, 162.4, 165.4, 166.4, (d, J = 251.3 Hz), 168.8;

STR1

19F NMR (CD3OD, 470 MHz) δ −108.6.

PATENT

http://www.google.ga/patents/WO2006026135

Scheme 1

Figure imgf000040_0001

Scheme 3

Figure imgf000041_0001

Scheme 4

Figure imgf000041_0002

Scheme 5

Figure imgf000041_0003

Scheme 6

Figure imgf000042_0002

Scheme 7

Figure imgf000042_0001

Scheme 8

Figure imgf000043_0001

Scheme 9

Figure imgf000043_0002

Scheme 10

Figure imgf000043_0003
Figure imgf000044_0001

Scheme 14

Figure imgf000045_0001

Scheme 15

Figure imgf000046_0001

Scheme 16

Figure imgf000047_0001

Scheme 17

Figure imgf000048_0001

Scheme 18

Figure imgf000048_0002

Scheme 19

Figure imgf000049_0001

Scheme 20

Figure imgf000049_0002

In

6-{4-[6~(4-Fluoro-phenyl)-2-(2~methyl-pyrrolidin-l-yl)-pyrimidin-4-yl]-3-(R)-met}τyl- piperazin-l-yl}-5-methyl-nicotinic acid

Figure imgf000100_0002

Heat a solution of 6-{4-[6-(4-fluoro-phenyl)-2-(2-methyl-pyrrolidin-l-yl)-pyrimidin-4-yl]- 3-(R)-methyl-piperazin-l-yl}-5-methyl-nicotinonitrile (100 mg, 0.212 mmol) in 12 M HCl for 3 hours at 9O0C. Concentrate the mixture under reduced pressure. Add a small amount of water, adjust the pH to 6-7, and collect the resulting white precipitate to afford the title compound as a off-white solid. 1H NMR (300 MHz, DMSO-d6): δ 1.24 (m, 6H, 2xCH3)); 1.61 (m, 1Η,); 1.84 (m, 1Η); 1.98 (m, 2Η); 2.34 (s, 3H, Ar-CH3); 2.91 (m, 1Η); 3.08 (m, 1Η); 3.26 (m, 2Η); 3.56 (m, 2H); 3.74 (m, IH); 4.21 (m, IH); 4.35 (m, IH); 4.74 (m, IH); 6.57 (s, IH); 7.26 (m, 2H); 7.91 (d, IH, J = 3Hz); 8.15 (m, 2H); 8.60 (d, IH, J = 3Hz).

PAPER

Development of a Multikilogram Scale Synthesis of a TRPV1 Antagonist

Department of Process Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.5b00388
Publication Date (Web): January 13, 2016
Copyright © 2016 American Chemical Society

Abstract

Abstract Image

A highly efficient, regioselective five-step synthesis of the TRPV1 antagonist 1 is described. The coupling of piperazine 7 with dichloropyrimidine 8 proceeded via a regioselective Pd-mediated amination affording product 11 in excellent yield. Conversion of the penultimate product 14 afforded 1 through formation of a magnesium ate complex and trapping with CO2.

http://pubs.acs.org/doi/suppl/10.1021/acs.oprd.5b00388

http://pubs.acs.org/doi/suppl/10.1021/acs.oprd.5b00388/suppl_file/op5b00388_si_001.pdf

 

 

TRPV1

Patent Submitted Granted
Substituted biaryl piperazinyl-pyridine analogues [US7662830] 2006-06-08 2010-02-16
SUBSTITUTED BIARYL PIPERAZINYL-PYRIDINE ANALOGUES [US2011003813] 2011-01-06

 

Blum, C. A.; Brielmann, H.; Chenard, B. L.; Zheng, X. Preparation of substituted biaryl piperazinyl-pyridine analogues as capsaicin modulators. PCT Int. Appl. WO 2006026135 A2 20060309, 2006.

Neurogen Corporation, a Subsidiary of Ligand Pharmaceuticals Inc., 11119 North Torrey Pines Road, Suite 200, La Jolla, CA 92037, U.S.A.

Neurogen and Merck Agreement for Next-Generation Pain Drugs Consummated

Source Press Release
Company NeurogenMerck & Co
Tags Central Nervous System, Research Collaboration
Date January 16, 2004

Branford, CT — January 16, 2004 — Neurogen  Corporation (Nasdaq: NRGN) today announced that it has consummated its previously announced alliance with  Merck & Co ., Inc. (NYSE: MRK) to discover and develop next-generation drugs for the treatment of pain. The deal received clearance from the Federal Trade Commission under the Hart-Scott-Rodino Act and the companies have now commenced the collaboration. The alliance, announced December 1, 2003, enables Merck , through a subsidiary, and Neurogen  to pool drug candidates targeting the  vanilloid  receptor (VR1 ), a key integrator of pain signals in the nervous system, and combine their ongoing VR1  programs to form a global research and development collaboration.

With consummation of the deal, Neurogen  has received $30 million from  Merck , including a $15 million up-front license fee payment and a $15 million equity investment in Neurogen  common stock. Under the agreement,  Merck  has purchased 1,783,252 shares of newly issued  Neurogen  common stock at $8.41 per share, the average market price per share for the 25 trading days preceding regulatory clearance.  Merck ‘s new shareholder position represents approximately 9% of Neurogen ‘s 19,873,464 total shares outstanding.

About Neurogen

Neurogen  Corporation targets new small molecule drugs to improve the lives of patients suffering from disorders with significant unmet medical need.  Neurogen  has generated a portfolio of compelling new drug candidates through its Accelerated Intelligent Drug Discovery (AIDD(TM)) system, its expertise in cellular functional assays, and its depth in medicinal chemistry.  Neurogen conducts its research and development independently and, when advantageous, collaborates with world-class pharmaceutical companies to obtain additional resources and to access complementary expertise.

////////

n1c(nc(cc1c2ccc(cc2)F)N3CCN(C[C@H]3C)c4ncc(cc4C)C(=O)O)N5CCC[C@H]5C


Filed under: Uncategorized Tagged: 1855897-95-8, 878811-00-8, LIGAND, MERCK, MK 2295, mk ?, neurogen, NGD 8243, ngd ?, PAIN, trpv1

WO 2016014324, New Patent, Omarigliptin, MERCK SHARP & DOHME CORP

$
0
0

Omarigliptin.svgOmarigliptin , MK-3102

 

WO2016014324, PROCESS FOR PREPARING CHIRAL DIPEPTIDYL PEPTIDASE-IV INHIBITORS

 

MERCK SHARP & DOHME CORP. [US/US]; 126 East Lincoln Avenue Rahway, New Jersey 07065-0907 (US).

 

CHUNG, John, Y. L.; (US).
PENG, Feng; (US).
CHEN, Yonggang; (US).
KASSIM, Amude Mahmoud; (US).
CHEN, Cheng-yi; (US).
MAUST, Mathew; (US).
MCLAUGHLIN, Mark; (US).
ZACUTO, Michael, J.; (US).
CHEN, Qinghao; (US).
TAN, Lushi; (US).
SONG, Zhiguo Jake; (US).
CAO, Yang; (US).
XU, Feng; (US)

A process for preparing a compound of structural Formula Ia: comprising Boc deprotection with TFA of, reductive amination of:.

front page image

The present invention is directed to a novel process for the preparation of omarigliptin, (2R,35,,5R)-2-(2,5-difluorophenyl)-5-[2-(methylsulfonyl)-2,6-dihydropyrrolo[3,4-c]pyrazol-5(4H)-yl]tetrahydro-2H-pyran-3 -amine, a dipeptidyl peptidase-IV (DPP-4) inhibitor, for the treatment of Type 2 diabetes, and related intermediates.

 

BACKGROUND OF THE INVENTION

Syntheses of omarigliptin have previously been described in PCT international patent applications numbers WO 2010/056708 and WO2013/003250. The process described in WO 2010/056708 does not result in a favorable yield of the compound of structural Formula la, as it results in a racemic mixture. WO2013/003250 describes the following scheme to make the compound of structural Formula la, an intermediate for synthesizing omarigliptin:

In WO2013/003250, synthesis of the compound of structural Formula la involves using benzenesulfonic acid (BSA) to remove the Boc protecting group of the compound of structural Formula 1, by first forming a BSA salt of the compound of structural Formula la. The BSA salt is then isolated and undergoes reductive amination with Boc -ketone of the compound of structural Formula 7, to produce the compound of structural Formula la, as a 19: 1 diastereomeric mixture. The BSA mediated Boc deprotection requires up to 72 h to reach full conversion.

An alternative process which eliminates the need to isolate the BSA salt of the compound of Formula la and reduces the overall reaction time of the process is desired. The inventors have now discovered a process for making the compound of structural Formula la which eliminates the step of isolating a salt of the compound of structural Formula la and reduces the overall reaction time. The present process also produces an end-of reaction homogeneous solution via reductive amination, which facilitates crystallization of the compound of structural Formula la. The described process also improves the diastereoselectivity, overall yield, cost and cycle time over the process described in WO2013/003250.

WO2013/003250 also describes the Boc deprotection of the compound of Formula la to produce omarigliptin (Formula I) shown below. As described in WO2013/003250, the Boc deprotection of the compound of Formula la involves aging the substrate in aqueous sulfuric acid in DMAc at 30 °C for 15-20 h, then working up with ammonium hydroxide. This work up produces large amounts of poorly soluble ammonium sulfate which co-crystallizes with the desired product. As a result, isolation of the desired product requires a long cycle time for filtration, washing and drying.

Formula I (omarigliptin)

Because the processes described herein use trifluoroacetic acid with or without a co-solvent for the transformation of the compound of Formula la to omarigliptin, which offers good solubility for the compound of Formula la, omarigliptin is achieved with fast reaction kinetics and good purity profiles.

the compound of structural Formula 1 is prepared by the following processes:

reagents

and,

or alternatively

10 R = Ms

X=OAc

SCHEME 3: Synthesis of the Boc Ketone

16 17 18 19

IPA, H2Q ,

1)956

Step 1 : As

A round bottom flask was charged with ligand L (0.829 g), Cu(II) propionate

monohydrate (0.402 g) (or Cu(II) acetate (0.31 g) or CuCl or CuCl2) and EtOH (350 ml) and agitated at room temperature for lh. 2,4-Difluorobenzaldehyde (100.0 g) was added followed by DABCO (2.368 g) (or 2,4-dimethylpiperizine) and the mixture was cooled to -5 – -15 °C. Cold (0°C) nitromethane (190 ml or 215 g) was added slowly to the cold solution and the solution was aged at -5 to -15 °C for 20-24 h and at 0 °C for 2-4h. 5 wt% EDTA»2Na (500 ml) followed by

water (200 mL) and MTBE (1.0 L) was added to the cold solution, and the temperature was raised to 20°C. The layers were separated and the organic layer was washed with additional 5 wt% EDTA»2Na (500 ml), followed by water (50 mL) and brine (250 mL). The organic layer, containing Compound 17, was concentrated to remove nitromethane, then the solvent was switched to THF.

Step 2: Michael-Lactolization – Nitro lactol

To Compound 17 in 2 volumes of THF (258 mL) from Step 1 under 2 and cooling at 0 °C, 1 equivalent of Hunig’s base was added. 1.15 equivalents of acrolein was added over 1 h via syringe pump at 0-5 °C. The reaction was stirred at -10-0 °C overnight. The resulting mixture was used directly in the next step.

Alternatively, the mixture was concentrated at 0-5 °C to remove excess acrolein, then the residue was flushed with acetonitrile until Hunig’s base and water are mostly removed. The residue was taken up in 8 volumes of acetonitrile and used directly in the next step.

Alternatively, at the end of the reaction the mixture was worked up by diluting with MTBE and washing with aqueous citric acid solution, and aqueous NaHCC solution, and the solvent was switched to acetonitrile. Alternatively, the end reaction mixture was taken forward directly to the next step.

Step 3: Dehydration – Nitro dihydropyrans

1.1 Equivalents of TEA was added to the acetonitrile solution of lactol 18 from Step 2 followed by 1.2 equivalents of mesyl chloride and 1.2 equivalents of S-collidine under < +10 °C . The reaction was aged at 10°C for 0.5-1 h. Alternatively, the end of the reaction mixture from Step 2 was cooled to between -20 °C to 0 °C. Two equivalents of S-collidine and 1.4 equivalents of mesyl chloride were then added. The mixture was heated to 36 °C and aged overnight. The mixture was cooled to room temperature. 15 volumes of MTBE was added and the solution was

washed with 3 volumes 10 wt% citric acid and 6 volumes water, 10 volumes water, then 3 volumes of 5% aHC03 solution and 6 volumes water. The organic was concentrated with 20 volumes of MTBE using 10 volumes MTBE. The organic solution was stirred with 20-30 wt% AQUAGUARD for 2 hours at room temperature. The mixture was filtered and washed with 2 volumes of MTBE.

Step 4: Dynamic Kinetic Resolution (DKR) crystallization – rraws-nitro-dihydropyran (19t)

The organic MTBE solution of Step 3 was solvent switched to 2 volumes of IPA and the final volume was -300 mL. 10 Mol% of TEA (or DAB CO or morpholine or DMAP) was added. Then water (1 15 mL) was slowly added over 3 hours. The slurry was filtered, washed with 80/20 IP A/water (2×100 mL) and vacuum dried under N2.

Step 5: Hydroboration/oxidation – Trans-nitro-pyranol

To a vessel charged with /raws-nitro-dihydropyran (10 g), MTBE (100 mL) was added under nitrogen. The mixture was stirred at room temperature to give a clear orange solution. The solution was cooled to +2 °C and borane dimethyl sulfide complex (9.55 ml) was added. The clear solution was aged for 2-5h until >99% conversion by HPLC analysis. The reaction was slowly quenched with water (7.25 ml) keeping at < +9 °C. After the solution was aged at 5°C for 5 min, water (78 mL) was added at < +13 °C. Solid sodium percarbonate (13.26 g, 84 mmol) was added. The suspension was stirred at 5 °C for 15h. The mixture was transferred to a separatory funnel with the aid of 60 mL MTBE and 20 mL water. The mixture was allowed to warm to room temperature. The aqueous phase was back-extracted with 40 mL MTBE. The combined organic phase was washed once with 30 mL half saturated sodium chloride solution, once with 15 mL brine and 15 mL 0.2N HC1, and once with 30 mL half-saturated sodium chloride solution. The organic layer was dried over a2S04. The organic was filtered, washed with 10 mL MTBE and concentrated to an oil. The oil was diluted to 200 mL for a 0.191M solution.

Step 6: Nitro Reduction/Boc protection – Pyranol

A 3 -neck jacketed round bottom flask equipped with overhead stirrier was charged with 0.191M (5R,6S)-5-nitro-pyran-3-ol (119 ml) (Compound 20) in ethanol and ethanol (32 ml). The solution was cooled to 1 1-12 °C. Cold 6N HC1 (19.55 ml, 1 17 mmol) was added at <

+17°C. Zinc dust (12.93 g) was added in five portions (5×2.59g) at < +26 °C. The mixture was stirred at 12 °C for 22 h. 1M K2C03 (76 mL) was added in one portion. MTBE (59 mL) was added then EDTA 2K 2H20 (22.55 g) was added over 10 min at < +14 °C. To the solution 45 wt% KOH (4.86 mL) solution was added. The solution was cooled to 5 °C, and 1.1 equivalents of B0C2O (5.46 g) was added. The solution was rinsed with MTBE (10 mL) and stirred at 5 °C for 2h, then at 12 °C for 16h, and then at 24 °C for lOh until >99.5% conversion. The solution was transferred to a separatory funnel with the aid of MTBE (30 mL) and water (5 mL). The organic layer was filtered and washed with MTBE (20 mL). The organic filtrate was concentrated. MTBE (60 mL), water (30 mL) and saturated sodium chloride solution (15 mL) were added. The mixture was warmed in a 30 °C bath to dissolve solid, and then concentrated. The concentrate was flushed with toluene in a 60 °C bath, then concentrated. Toluene (8.4 mL) was added and the mixture was heated to 80 °C. Heptane (70.8 mL) was added over lh at 80 °C, then cooled slowly to room temperature. The mixture was filtered and washed with 1 :2 toluene/heptane (23.55 mL), filterated and vacuum dried under nitrogen until a constant weight.

The purity could be further upgraded by the following procedure: a round bottom flask was charged with the product of Step 6 (7.069 g) from above. EtOH (21 mL) was added and the mixture was heated to 45 °C. Water (31.5 mL) was slowly added over 1 h at 45 °C. The mixture was aged for lh. Water (31.5 mL) was added in one portion, then cooled slowly to room temperature and aged overnight. The slurry was filtered and washed with 1 :3.5 EtOH/water (23.56 mL). Crystals were vacuum dried under nitrogen until a constant weight.

Alternatively, Compound 20 was reduced with 100 psi hydrogen in 20 volume wet THF in the presence of 10-30 wt% Raney nickel at 50 °C. Then the reaction mixture was basified with 2 equivalent of K2CO3 and a slight execess B0C2O to afford crude Compound 21 after aqueous work up.

Compound 7 was obtained from 21via oxidation as described in WO2013/003250.

S

Boc-mesyl-pyrazole solid 1 was added to 2.5 volumes of TFA at 0-2 °C, over 2-3 minutes under nitrogen, followed by 0.5 volume of TFA rinse. Conversion to TFA salt was complete within 0.5-lh at 1-2 °C. DMAc (14 vol) followed by triethylamine (5 equivalents or 2.3 volumes) were slowly added to the TFA reaction mixture at 0 °C maintaining < +20 °C. Boc-ketone 7 (0.89 equivalent) was then added at -15 °C followed by solid NaBH(OAc)3 (1.4 equivalents) which was added in three portions over lh. The reaction solution was aged at -15 °C overnight. The solution was then warmed to 22 °C, and after aging for 2-5 h. Diastereomeric ratio was > 96.5:3.5.

The solution was seeded with Boc amine 1 wt% at 22 °C and stirred at 22-40 °C for 2-4 h. 0.36 volume 28% ammonium hydroxide was added over 2-4 h, then, 3.64 volumes 28% ammonium hydroxide was added over 4-10h at 22-60 °C. After cooling to 22 °C, the batch was filtered, washed with 5: 1 DMAc/water, then water. The wet cake was vacuum dried under nitrogen at ambient affording the product. Diastereoselectivity was > 30: 1.

Boc Deprotection of Formula la

A reactor was charged with 2.5 X (by volume) of trifluoroacetic acid. The batch was cooled to 5-10 °C. The reactor was then charged with 0.4 X (by volume) water. The batch was cooled to 0-5 °C. The reactor was then charged with 1 equivalent (1 kg) of the compound of Formula la over 0.5-lh while maintaining the temperature between 0 -5°C. The reactor was then charged with 0.5 X (by volume) trifluoroacetic acid to reactor while maintaining the temperature between 0-5°C. The batch was then heated between 15-20°C and aged for 2-2.5 h. The batch was then cooled to between 5-10°C. A crystallizer was charged with water 5.0 X (by volume) and 0.1 X (by volume) of ammonia water and adjusted to between 3-13°C. To generate a seed bed, Compound I seed (lwt% vs la) was added and the temperature as adjusted to between 3-13°C. A solution of ammonia water 3.8 X (by volume) and of the compound of Formula la was added simultaneously to the seed bed over 2.5 – 3.5 hours while maintaining temperature at 3-13°C and pH -9-10. The batch was aged for at least 30 minutes and then filtered. The resulting crystals were washed with 3. OX (by volume) water at 3 – 13°C twice and vacuum dried at < 50°C to afford the compound of formula I.


//////WO 2016014324, New Patent, Omarigliptin, MERCK SHARP & DOHME CORP, MK-3102


Filed under: PATENT, PATENTS Tagged: MERCK SHARP & DOHME CORP, MK 3102, NEW PATENT, OMARIGLIPTIN, WO 2016014324

WO 2016011767, New patent, Clopidogrel, SHENZHEN SALUBRIS/ HUIZHOU SALUBRIS

$
0
0

 

Clopidogrel skeletal formula.svg

WO 2016011767

SHENZHEN SALUBRIS PHARMACEUTICALS CO.,LTD [CN/CN]; 37F Main Tower, Lvjing plaza, Che Gong Miao, No. 6009 Shennan Road, Futian District Shenzhen, Guangdong 518040 (CN).
HUIZHOU SALUBRIS PHARMACEUTICALS CO.,LTD. [CN/CN]; No.42, West petrochemical Avenue, West District,Huizhou DayaBay Huizhou, Guangdong 516083 (CN)

LI, Haidong; (CN).
TAN, Duanming; (CN).
WANG, Hai; (CN)

Provided is a preparation method for high purity clopidogrel and salt thereof. In the present method, inorganic acid solution is used to wash an organic phase containing clopidogrel till a specific pH value range is reached; during the post-processing stage, impurities including TTP can be removed from the clopidogrel product. The ensuing refining step can be avoided, thereby simplifying production techniques and ensuring the quality of the clopidogrel product.

 

Clopidogrel, molecular formula: C 16 H 16 ClNO 2 S, it is an inhibitor of induced platelet aggregation by inhibiting platelet aggregation reduces the chance of arterial obstruction, to prevent stroke and heart attack efficacy, and can effectively treatment and prevention of atherosclerosis. Clopidogrel clinical use for right-handed body, clinical sulfate administered in the form of finished products on the domestic market clopidogrel main Plavix (Plavix) and Techno.

 

Currently it reported a variety of synthetic methods clopidogrel or a salt thereof, may be optically active or racemic α- substituted-o-chlorophenyl-acetate as a raw material, and 4,5,6,7-tetrahydro-thieno [3, 2-c] pyridine or a salt thereof under basic conditions to afford the optically active or racemic clopidogrel or a salt thereof, and further in line with the preparation of pharmaceutically acceptable Clopidogrel sulfate API standards.

 

 

Chinese Patent CN200810142388.3 using α- dextrose substituted benzenesulfonic substituted-o-chlorophenyl-acetate prepared above dextrorotatory clopidogrel free base, the process with ethyl acetate as the reaction solvent, followed by treatment using the organic phase washed with water The method of removing impurities.

 

Chinese Patent CN201310167933.5 prepared using the above racemic Clopidogrel hydrochloride, the method with dichloromethane as the solvent, after the reaction was washed with water and the organic layer was evaporated to dryness, the salt in ethyl acetate to give the product.
If the above process synthesis optically active or racemic clopidogrel or a salt thereof, the reaction system there is usually residual starting material 4,5,6,7-tetrahydro-thieno [3,2-c] pyridine (referred to as “TTP “) or a salt thereof, according to the method disclosed in the prior art, after the treatment of the synthesis process commonly used water extraction – water / weak alkaline solution washed – salt-forming method, since the same TTP and clopidogrel alkaline organics neutral or alkaline solution solubility difference, and is in an acidic solution with a salt, and therefore only the wash water or weak alkaline solution generally can not be divisible TTP, usually larger residues.
Due to the special nature of clopidogrel API, making it even within the scope of quality control requirements of the quality standards, there are still unstable phenomenon. In the standard range of high impurity content on the one hand it can significantly affect the stability of the product, on the other hand will increase the side effects of the subsequent steps. Thus, the prior art is usually removed after the reaction by purification methods such as recrystallization include TTP including impurities, but it will increase the preparation process, in addition to loss of product due to some of the products will remain in the mother liquor caused.

 

From the above, in a more convenient way to remove impurities, higher purity, better stability of clopidogrel and its salts are existing technology is not yet resolved. The present invention is a departure from the deficiencies of the prior art, provides a method for preparing high purity clopidogrel and its salts, which can be removed after the treatment stage the majority of clopidogrel impurities in the product, avoiding the subsequent refining step In simplifying the production process, while ensuring the quality of clopidogrel products.

 

Example 1 (racemic clopidogrel hydrochloride monohydrate) Example
China Patent CN201310167933.5 using the method disclosed in Example 19 preparation of racemic clopidogrel. In TTP and α- bromo-o-chlorophenyl acetate The reaction was refluxed for 4h after the organic phase was separated, the methylene chloride solution of racemic clopidogrel. With stirring was added 5% hydrochloric acid (pH approximately 0), the aqueous phase until the pH stabilized around 4. The phases were separated and the organic phase the solvent was evaporated under reduced pressure, 75ml of ethyl acetate was added to dissolve, added dropwise with stirring 6.6g 36% hydrochloric acid to precipitate crystals. 2h After filtration, the filter cake washed with ethyl acetate. After drying in vacuo to give 17.2g white crystals. Using the same test conditions and CN201310167933.5 testing product purity of 99.8% containing impurities TTP 0.011% (area normalization method).
Example 2 (racemic clopidogrel hydrochloride monohydrate)
China Patent CN201310167933.5 using the method disclosed in Example 19 preparation of racemic clopidogrel. In TTP with α- bromo-o-chlorophenyl acetate reflux 4h reaction after the separation of the organic phase. The organic phase the solvent was evaporated under reduced pressure, 75ml of ethyl acetate was added to dissolve. 5% hydrochloric acid was added with stirring, until the aqueous phase pH stabilized around 3. Phase, the organic phase was added dropwise with stirring to 6.6g 36% hydrochloric acid to crystallize. 2h After filtration, the filter cake washed with ethyl acetate. After drying under vacuum to give 17.0g white crystals. Product purity was 99.7% containing impurities, TTP 0.014% (detecting method as in Example 1).
Example 3 (right-handed clopidogrel hydrogen sulfate)
The TTP hydrochloride 26.4g (0.15mol), ethyl acetate 50ml, 80ml mixing water and potassium carbonate 22g, stirred for 20 minutes. Joined by R-α- methyl tosylate Chloromandelic 34.1g (0.1mol) mixture of ethyl acetate and 50ml solution. The reaction temperature was raised to 45 ℃ 4h, then the reaction was heated to 60 ℃ to R-α- methyl tosylate Chloromandelic completely consumed (about 3h). Cooled to room temperature phase.
The organic phase was added with stirring to a 5% aqueous sulfuric acid until the pH of the aqueous phase is stable at around 3. After stirring 10min static phase separation. Then dried over anhydrous magnesium sulfate, and evaporated to dryness to give 30.6g dextrose clopidogrel hydrogen sulfate. Purity 98.6% by HPLC, spectrum display free of impurities TTP.

//////WO 2016011767, New patent,Clopidogrel, SHENZHEN SALUBRIS,  HUIZHOU SALUBRIS


Filed under: PATENT, PATENTS Tagged: Clopidogrel, HUIZHOU SALUBRIS, NEW PATENT, SHENZHEN SALUBRIS, WO 2016011767

PF 04995274, a 5-HT4Partial Agonist

$
0
0

PF-04995274,

(R)-4-((4-(((4-(Tetrahydrofuran-3-yloxy)-1,2-benzisoxazol-3-yl)oxy)methyl)piperidin-1-yl)methyl)tetrahydro-2H-pyran-4-ol

4-(4-{4-[(R)-(Tetrahydro-furan-3-yl)oxy]-benzo[d]isoxazol-3-yloxymethyl}-piperidin-1-ylmethyl)-tetrahydro-pyran-4-ol

CAS  1331782-27-4
UNII: XI179PG9LV

MF C23-H32-N2-O6

MW 432.5138

a 5-HT4Partial Agonist

PHASE 1 Alzheimer’s type dementia.

Pfizer Inc. INNOVATOR

5-HT4 agonists have attracted attention for therapeutic value in the treatment of Alzheimer’s Disease (AD) and cognitive impairment.Acting to increase levels of acetylcholine and soluble APP alpha, 5-HT4 agonists have the potential to demonstrate both ameliorative and disease modifying effects

(R)-4-((4-((4-(tetrahydrofuran-3-yloxy)benzo[d]isoxazol-3-yloxy)methyl)piperidin-1-yl)methyl)tetrahydro-2/-/-pyran-4-ol and pharmaceutically acceptable salts thereof. This invention also is directed, in part, to a method for treating a 5-HT4 mediated disorder in a mammal. Such disorders include acute neurological and psychiatric disorders, stroke, cerebral ischemia, spinal cord trauma, head trauma, perinatal hypoxia, cardiac arrest, hypoglycemic neuronal damage, dementia, Alzheimer’s disease, Huntington’s Chorea, amyotrophic lateral sclerosis, ocular damage, retinopathy, cognitive disorders, idiopathic and drug- induced Parkinson’s disease, muscular spasms and disorders associated with muscular spasticity including tremors, depression, epilepsy, convulsions, migraine, urinary incontinence, substance tolerance, substance withdrawal, psychosis, schizophrenia, anxiety, mood disorders, trigeminal neuralgia, hearing loss, tinnitus, macular degeneration of the eye, gastroesophageal reflux disease, gastrointestinal disease, gastric motility disorder, non-ulcer dyspepsia, functional dyspepsia, irritable bowel syndrome, constipation, dyspepsia, esophagitis, gastroesophageral disease, nausea, emesis, brain edema, pain, tardive dyskinesia, sleep disorders, attention deficit/hyperactivity disorder, attention deficit disorder, disorders that comprise as a symptom a deficiency in attention and/or cognition, and conduct disorder

PF SYN1

a(a) SOCl2, DMAP, acetone, DME, RT, 81%;

(b) DEAD, PPh3, THF, RT, 65%;

(c) K2CO3, MeOH, RT, 92%;

(d) K2CO3, water, MeOH, 50 °C, 76%;

(e) CDI, THF, 50 °C, 43%;

(f) DEAD, PPh3, THF, reflux, 51%;

(g) HCl, Et2O, RT, 81%;

(h) TEA, MeOH, reflux, 50%.

PAPER

Journal of Medicinal Chemistry (2012), 55(21), 9240-9254

http://pubs.acs.org/doi/abs/10.1021/jm300953p

Abstract Image

The cognitive impairments observed in Alzheimer’s disease (AD) are in part a consequence of reduced acetylcholine (ACh) levels resulting from a loss of cholinergic neurons. Preclinically, serotonin 4 receptor (5-HT4) agonists are reported to modulate cholinergic function and therefore may provide a new mechanistic approach for treating cognitive deficits associated with AD. Herein we communicate the design and synthesis of potent, selective, and brain penetrant 5-HT4 agonists. The overall goal of the medicinal chemistry strategy was identification of structurally diverse clinical candidates with varying intrinsic activities. The exposure–response relationships between binding affinity, intrinsic activity, receptor occupancy, drug exposure, and pharmacodynamic activity in relevant preclinical models of AD were utilized as key selection criteria for advancing compounds. On the basis of their excellent balance of pharmacokinetic attributes and safety, two lead 5-HT4 partial agonist candidates 2d and 3 were chosen for clinical development.

PATENT

https://www.google.co.in/patents/WO2011101774A1?cl=en

(R)-4-((4-((4-(tetrahydrofuran-3-yloxy)benzo[d]isoxazol-3-yloxy)methyl)piperidin-1-yl)methyl)tetrahydro-2H-pyran-4-ol , hereinafter referred to as “Compound X,” and having the following structure:


Compound X

Example 1 : Synthesis of iR)-4-ii4-i(4-itetrahvdrofuran-3-yloxy)benzord1isoxazol-3-yloxy)methyl)piperidin-1 -yl)methyl)tetrahvdro- 2 -pyran-4-ol

Methyl 2-fluoro-6-hydroxybenzoate (2): To a 20L jacketed reactor were charged 2-fluoro-6-hydroxybenzoic acid (Oakwood Products; 0.972 kg, 6.31 mol), methanol (7.60 L) and sulfuric acid (0.710 kg, 7.24 mol, 1 .15 eq). The jacket temperature was heated to 60°C and the reaction mixture was stirred for 45 h. The reaction mixture was concentrated under vacuum and approximately 7.5 L of methanol distillates were collected. The resulting thin oil was cooled to 20°C. Water (7.60 L) and ethyl acetate (7.60 L) were charged to the reactor, and the product extracted into the organic layer. The EtOAc solution was washed with a solution of sodium bicarbonate (1.52 Kg) in water (6.92 L) followed by a brine solution of sodium chloride (1.74 kg) in water (4.08 L). The resulting EtOAc solution was concentrated to dryness. A light orange oil was isolated; the oil slowly crystallized upon standing to give the title compound (2) (0.952 Kg, 5.60 mol, 89% yield). 1 H NMR (400 MHz, CDCI3) δ ppm 3.97 (s, 3H), 6.59 (ddd, J=10.9, 8.2,1 .2, 1 H), 6.76 (dt, J=8.2, 1 .1 , 1 H), 7.35 (td, J=8.6, 6.3, 1 H), 1 1.24 (s, 1 H); 13C NMR (400 MHz, CDCI3) δ ppm 52.65, 102.56 (d, J=13), 106.90 (d, J=23), 1 13.31 (d, J=3.1 ), 135.34 (d, J=1 1 .5), 161 .02, 163.31 (d, J=62.2), 169.87 (d, 3.8); MS 171.045 (m+1 ). 2-Fluoro-N,6-dihydroxybenzamide (3): To a 50L reactor was charged water (4.47 L) and hydroxylamine sulfate (6.430 kg, 39.17 mol), the mixture was stirred at 25°C. A solution of potassium carbonate (3.87 Kg, 27.98 mol) in water (5.05 L) was slowly added to the reaction mixture to form a thick white mixture that was stirred at 20°C. A solution of methyl 2-fluoro-6-hydroxybenzoate (2) (0.952 Kg, 5.60 mol) in methanol (9.52 L) was slowly added to the reactor resulting in mild off gassing. The reaction mixture was then heated to 35°C and stirred for 20 h. The reaction mixture was cooled to 15°C and stirred for 1 h. The mixture was filtered to remove inorganic material. The reactor was rinsed with methanol (2.86 L) and the tank rinse was used to wash the inorganic cake.

Analysis of the cake indicated that it contained product. To a 20L reactor was charged methanol (10 L) and the inorganic cake and the mixture was stirred at 25°C for 30 min. The mixture was filtered and the cake washed with methanol (3 L).

The combined filtrates were charged back into the reactor and concentrated under vacuum with the jacket temperature set at 40°C until approximately 10 L remained. The mixture was held at 25°C and cone. HCI (5.51 L) was added. The reactor was cooled to 15°C and stirred for 2 h. The white slurry was filtered and the resulting product cake was washed with water (4.76L), blown dry with nitrogen and then dried in a vacuum oven at 40°C for 12 h. The desired product (3) (747 g, 4.36 mol), was isolated in 78% yield. 1 H NMR (400 MHz, CD3OD) δ ppm 4.91 (s, 3H), 6.63 (ddd, J=10.9, 8.5, 0.8, 1 H), 6.72 (dt, J=8.2, 0.8, 1 H), 7.31 (td, J=8.2, 6.6, 1 H); MS 172.040 (m+1 ).

4-Fluorobenzo[d]isoxazol-3-ol (4): To a 20L jacketed reactor were charged tetrahydrofuran (2.23 L) and 1 ,1 ‘-carbonyldiimidazole (0.910 Kg, 5.64 mol). The resulting mixture was stirred at 20°C. Then a solution of 2-fluoro-N,6-dihydroxybenzamide (3) (744 g, 4.34 mol) in tetrahydrofuran (4.45 L) was slowly charged to the reactor maintaining the temperature below 30°C and stirred at 25°C for 30 min during which some off gassing was observed. The reaction mixture was heated to 60°C over 30 min and stirred for 6 h. The reactor was cooled to 20°C followed by the addition of 1 N aqueous hydrogen chloride (7.48L) over 15 min to adjust the pH to 1. The jacket temperature was set to 35°C and the reaction mixture concentrated under vacuum to remove approximately 6.68L of THF. The reactor was cooled to 15°C and stirred for 1 h. The resulting white slurry was filtered, the cake was washed with water (3.71 L) and dried in a vacuum oven at 40°C for 12 h. The desired product, (4) (597 g, 3.90 mol), was isolated in 90% yield. 1 H NMR (400 MHz, CD3OD) δ ppm 4.93 (b, 1 H), 6.95 (dd, J=10.1 , 8.6, 1 H), (d, J=8.6, 1 H), 7.52-7.57 (m, 1 H); LRMS 154.029 (m+1 ).

Tert-butyl 4-(tosyloxymethyl)piperidine-1-carboxylate (5): To a 20L jacketed reactor were charged dichloromethane (8 L), N-boc-4-piperdine methanol (0.982 Kg, 4.56 mol) and p-toluenesulfonyl chloride (0.970 Kg, 5.09 mol) and the resulting mixture was stirred at 20°C for 5 min. Triethylamine (0.94 Kg, 9.29 mol) was added to the reactor via an addition funnel and the resulting deep red solution was stirred at 25°C for 16 h. A solution of sodium carbonate (0.96 Kg, 9.06 mol) in water (7.04 L) was charged to the reaction mixture and stirred for 1 h at 20°C. The phases were split and the organic layer washed with brine (6 L) and concentrated at 40°C to a low stir volume. Dimethylacetamide (2 L) was charged to the reactor and concentration continued under full vacuum at 40°C for 1 h. The solution of tert-butyl 4-(tosyloxymethyl)piperidine-l -carboxylate (5) in dimethyl acetamide was held for further processing. Yield was assumed to be 100% with approximately

90% potency. A sample was pulled and concentrated to dryness for purity analysis. 1 H NMR (400 MHz, CDCI3) δ ppm 1 .02-1 .12 (m, 2H), 1.14 (s, 9H), 1 .59-1.64 (m, 2H), 1.75-1.87 (m, 1 H), 2.43 (s, 3H), 2.55-2.75 (m, 2H), 3.83 (d, J=6.7, 2H), 3.95-4.20 (b, 2H), 7.33 (d, 8.6, 2H), 7.76 (d, 8.2, 2H); 13C NMR (400 MHz, CDCI3) δ ppm 21 .64, 28.15, 28.39, 35.74, 73.97, 79.50, 126.99, 127.84, 129.86, 132.84, 144.84, 154.63; LRMS 739.329 (2m+1 ).

Tert-butyl 4-((4-fluorobenzo[d]isoxazol-3-yloxy)methyl)piperidine-1-carboxylate (6): To a 20L jacketed reactor were charged dimethylacetamide (4.28 L), tert-butyl 4-(tosyloxymethyl)piperidine-1 -carboxylate (5) (1.68 Kg, 4.56 mol), 4-fluorobenzo[d]isoxazol-3-ol (4) (540 g, 3.51 mol), and potassium carbonate (960 g, 6.98 mol) resulting in a thick beige slurry. The reaction mixture was heated to 50°C and stirred for 20 h and then cooled to 20°C, followed by the addition of water (7.5 L) and ethyl acetate (5.37 L). After mixing for 15 min, the phases were settled and split. The organic layer was washed with water (5.37 L), sending the aqueous wash to waste. The organic mixture was distilled under vacuum with a maximum jacket temperature of 40°C until approximately 5 L remained in the reactor. Methanol (2.68 L) was added and the resulting solution concentrated under vacuum to about 3 L of a yellow oil. Methanol (2.68 L) was charged to the reactor and the resulting solution was stirred at 25°C for 15 min. Water (0.54 L) was added over 15 min resulting in a white slurry. The mixture was cooled to 15°C, stirred for 1 h and then filtered. The filter cake was washed with a solution of water (0.54 L) in methanol (2.14 L), then air dried for 30 min, transferred to a vacuum oven and dried at 40°C for 12 h. The desired product, (6) (746 g, 2.13 mol), was isolated in 61 % yield. 1 H NMR (400 MHz, CDCI3) δ ppm 1.23-1 .37 (m, 2H), 1 .45 (s, 9H), 1 .78-1 .88 (m, 2H), 2.04-2.17 (m, 1 H), 2.67-2.83 (m, 2H), 4.02-4.26 (m, 2H), 4.28 (d, 6.6, 2H), 6.89 (dd, J=8.6, 7.5, 1 H), 7.21 (d, J=9, 1 H), (td, 8.6, 4.9); LRMS 351.171 (m+1 ).

(R)-Tert-butyl 4-((4-(tetrahydrofuran-3-yloxy)benzo[d]isoxazol-3-yloxy)methyl)piperidine-1-carboxylate (8): To a 20 L glass reactor with the jacket set to 20°C were charged (R)-tetrahydrofuran-3-ol (7) (297 g, 3.37 mol) and dimethylacetamide (5.1 L). 2.0 M sodium bis(trimethylsilyl)amide in THF (1.37 L, 2.74 mol) was slowly added via an addition funnel while maintaining a pot temperature less than 30°C. The resulting orange/red solution was stirred at 25°C for 30 min. Then, tert-butyl 4-((4-fluorobenzo[d]isoxazol-3-yloxy)methyl)piperidine-1 -carboxylate (6) (640.15 g, 1.83 mol) was charged and the reaction mixture was stirred at 25°C for 16 h. The reaction mixture was cooled to 20°C and water (6.4 L) was slowly added over 45 min maintaining a pot temperature of less than 35°C. Ethyl acetate (6 L) was added and the biphasic mixture was stirred for 15 min and then separated. The aqueous layer was back extracted with additional ethyl acetate (4 L). The combined organics were then washed with water (5 L) and a 20% brine solution (5 L). The organic mixture was concentrated under vacuum with the jacket temperature set to 40°C to approximately 3 L and held for further processing. Quantitative yield of the desired product, (8) (0.76 Kg, 1 .82 mol), in ethyl acetate was assumed. A sample was pulled and concentrated to dryness for purity analysis. 1 H NMR (400 MHz, CDCI3) δ ppm 1 .25-1.38 (m, 2H), 1 .44 (s, 9H), 1.76-1 .84 (m, 2H), 1 .89-1.97 (b, 1 H), 1 .99-2.12 (m, 1 H), 2.14-2.28 (m, 2H), 2.63-2.84 (m, 2H), 3.90-4.21 (m, 6H), 4.24 (d, J=6.3, 2H), 5.00-5.05 (m, 1 H), 6.48 (d, J=8.2, 1 H), 6.98 (d, J=8.6, 1 H), 7.37 (t, J=8.2, 1 H); LRMS 419.216 (m+1 ).

(R)-3-(Piperidin-4-ylmethoxy)-4-(tetrahydrofuran-3-yloxy)benzo[d]isoxazole 4-methylbenzenesulfonate (9): To a 20L jacketed reactor charged ethyl acetate (6.1 L), (R)-tert-butyl 4-((4-(tetrahydrofuran-3-yloxy)benzo[d]isoxazol-3-yloxy)methyl)piperidine-1 -carboxylate (8) (0.76 kg, 1 .82 mol) and p-toluenesulfonic acid monohydrate (0.413 kg, 2.17 mol) and stirred at 20°C for 30 min. The reactor jacket was heated from 20 to 65°C over

1 h and then held at 65°C for 16 h. The reactor was cooled to 15°C over 1 h and granulated for 2 h. The resulting slurry was filtered, the cake was washed with EtOAc (3 L) and then air dried on the filter for 30 min. The cake was transferred to a vacuum oven and dried at 40°C for 12 h. The desired product, (9) (854 g, 1.74 mol), was isolated in 96% yield (two steps). 1 H NMR (400

MHz, CD3OD) δ ppm 1.54-1 .67 (m, 2H), 2.04-2.18 (m, 3H), 2.19-2.36 (m, 2H), 2.33 (s, 3H), 3.01 -3.12 (m, 2H), 3.41-3.50 (m, 2H), 3.86-4.01 (m, 4H), 4.26 (d, J=6.3, 2H), 4.90 (s, 2H), 5.14-5.19 (m, 1 H), 6.72 (d, J=8.2, 1 H), 7.02 (d, J=8.6, 1 H), 7.21 (d, J=7.8, 2H), 7.48 (t, J=8.6, 1 H), 7.70 (d, J=8.2, 2H); LRMS 319.165 (m+1 ).

(R)-4-((4-((4-(Tetrahydrofuran-3-yloxy)benzo[d]isoxazol-3-yloxy)methyl)piperidin-1-yl)methyl)tetrahydro-2H-pyran-4-ol (11): To a

20L jacketed reactor were charged water (7.5 L) and sodium carbonate (0.98 kg); the mixture was stirred at 20°C until all solids had dissolved. Then (R)-3-(piperidin-4-ylmethoxy)-4-(tetrahydrofuran-3-yloxy)benzo[d]isoxazole 4-methylbenzenesulfonate (9) (750 g, 1 .53 mol) and ethyl acetate (6.0 L) were added to the reactor and stirred at 20°C for 30 min. The phases were split and the lower aqueous layer was back extracted twice with ethyl acetate (6.0 L and then 3.75 L). The organic layers were combined in the 20L reactor and washed twice with brine (3.0 L). The ethyl acetate solution was concentrated to under vacuum at 45°C to a low stir volume. Isopropyl alcohol (3.75 L) was added and concentration continued until 2 L remained in the reactor.

Additional isopropyl alcohol (2.75 L) was added and the mixture cooled to 25°C. To the reactor was charged 1 ,6-dioxaspiro[2.5]octane (10) (260 g, 2.29 mol) and the resulting solution heated to 50°C and stirred for 16 h. The reaction mixture was cooled to 30°C and water (15 L) was added over 60 min. Product crystallized from solution and the resulting slurry was cooled to 15°C over 1 h and then granulated for 4 h. The product was filtered and washed with water (3.75 L). The cake was blown dry with nitrogen for 30 min and then transferred to a vacuum oven and dried at 40°C for 12 h. The desired product, (11 ) (588 g, 1 .36 mol), was isolated in 89% yield.

1 H NMR (400 MHz, CDCI3) δ ppm 1 .41-1 .63 (m, 6H), 1.71 -1.81 (m, 2H), 1.81 -1.94 (m, 1 H), 2.17-2.26 (m, 2H), 2.33 (s, 2H), 2.4 (td, J=1 1.7, 2.3, 2H), 2.92 (d, J=1 1 .8, 2H), 3.46 (s, 1 H), 3.71-3.84 (m, 4H), 3.91 -4.10 (m, 4H), 4.24 (d, J=5.9, 2H), 5.03-5.08 (m, 1 H), 6.50 (d, J=8.2, 1 H), 7.00 (d, J=8.2, 1 H), 7.38 (t, J=8.2, 1 H);

13C NMR (400 MHz, CDCI3) δ ppm 29.1 1 , 33.10, 35.20, 36.92, 36.96, 56.15, 63.93, 67.14, 67.46, 68.27, 72.94, 74.06, 78.37, 103.17, 105.15, 131.71 , 152.71 , 166.02, 166.28;

LRMS 433.232 (m+1 ).

Example 2: Synthesis of iR)-4-ii4-i(4-itetrahvdrofuran-3-yloxy)benzord1isoxazol-3-yloxy)methyl)piperidin-1 -yl)methyl)tetrahvdro- 2H-pyran-4-ol

5-Hydroxy-2,2-dimethyl-benzo[1,3]dioxin-4-one: Thionyl chloride (83.8 g, 0.71 mol) was slowly added to a solution of 2,6-dihydroxy-benzoic acid (77 g, 0.5 mol), acetone (37.7 g, 0.65 mol) and DMAP (3.1 g, 0.025 mol) in dimethoxyethane (375 mL). The mixture was stirred at RT for 7 h. The residue obtained after concentration under reduced pressure was dissolved in ethyl

acetate and washed with water and aqueous saturated sodium bicarbonate solution. The organic layer was dried (Na2S04) and concentrated to afford 79 g desired product as a red solid (81 % yield). 1 H NMR (400 MHz, CDCI3) δ ppm 1 .68 (s, 6H), 6.37 (dd, J=8, 0.8, 11-1) 6.56 (dd, J=8, 0.8, 1 H), 7.34 (t, J=8, 1 H), 10.27( brs, 1 H).

2,2-Dimethyl-5-[(R)-(tetrahydro-furan-3-yl)oxy]-benzo[1,3]dioxin-4-one:

Diethyl azodicarboxylate (130.5 g, 0.75 mol) was added in a dropwise fashion to a mixture of 5-hydroxy-2,2-dimethyl-benzo[1 ,3]dioxin-4-one (100 g, 0.51 mol), triphenylphosphine (196.5 g, 0.75 mol), and (S)-tetrahydro-furan-3-ol (44 g, 0.5 mol) in 600 ml. of anhydrous THF. The resulting mixture was stirred at RT for 18 h. The solvent was removed under reduced pressure and the crude material was purified on a silica gel flash column, eluting with petroleum ether/ ethyl acetate (15:1 -> 3:1 ). 86 g (65% yield) of product was isolated as a colorless oil. 1 H NMR (400 MHz, CDCI3) δ ppm 1.67 (s, 6H), 2.30 (m, 2H), 4.2 (m, 4H) 4.97 (m, 1 H), 6.49 (d, J=8.4, 1 H) 6.51 (d, J=8.4, 1 H), 7.39 (t,

J=8.4, 1 H).

2-Hydroxy-6-[(R)-(tetrahydro-furan-3-yl)oxy]-benzoic acid methyl ester: Potassium carbonate (134.8 g, 0.98 mol) was added to a solution of 2,2-dimethyl-5-[(R)-(tetrahydro-furan-3-yl)oxy]-benzo[1 ,3]dioxin-4-one (86 g, 0.33 mol) in 1 L methanol. The mixture was stirred at RT for 2 h, then concentrated in vacuo. The residue was dissolved in ethyl acetate and washed with aqueous ammonium chloride solution. The organic layer was dried (Na2S04) and concentrated to afford 72 g of the product as a yellow solid (92% yield). 1 H NMR (400 MHz, CDCI3) δ ppm 2.20 (m, 2H), 3.99 (s, 3H), 4.80(m, 4H). 4.94 (m, 1 H), 6.31 (dd, J=8.4, 0.8, 1 H), 6.59 (dd, J=8.4, 0.8, 1 H), 7.30 (t, J=8.4, 1 H).

2,N-Dihydroxy-6-[(R)-(tetrahydro-furan-3-yl)oxy]-benzamide: Potassium carbonate (121 g. 0.867mmol) was added portionwise to a solution of hydroxylamine sulfate (120 g, 0.732 mol) in 360 ml. of water at 0°C. After stirring for 30 min, sodium sulfite (3.74 g, 0.029 mol) and a solution of 2-hydroxy-6-[(R)-(tetrahydro-furan-3-yl)oxy]-benzoic acid methyl ester (35 g, 0.146 mol) in 360 ml. of methanol were added and the mixture was stirred at 50°C for 30 h. Methanol was removed from the cooled reaction mixture under reduced pressure and the resulting aqueous layer was acidified with 2N HCI. The aqueous layer was extracted with ethyl acetate and the organic layer was dried (Na2S04) and concentrated to afford 25 g (76% yield ) of the product as a yellow solid. 1 H NMR (400 MHz, CDCI3) δ ppm 2.00 (m, 1 H), 2.15 (m, 1 H), 3.80 (m, 4H), 5.05 (m, 1 H), 6.48 (d, J=8, 1 H), 6.49 (d, J=8, 1 H), 7.19 (t, J=8, 1 H), 10.41 (brs, 1 H), 1 1.49 (brs, 1 H); LRMS m/z 239 (m+1 ).

4-[(R)-(Tetrahydro-furan-3-yl)oxy]-benzo[d]isoxazol-3-ol: A solution of 2, N-dihydroxy-6-[(R)-(tetrahydro-furan-3-yl)oxy]-benzamide (25 g, 0.105 mol) in 250 ml. of THF was heated to 50°C. Carbonyl diimidazole was added portionwise and the resulting mixture was stirred at 50°C for 14 h. After cooling to RT, 100 ml. of 2N HCI was added and the aqueous layer was extracted with ethyl acetate. The combined organic layers were then extracted three times with 10% aqueous potassium carbonate. The potassium carbonate aqueous extracts were washed with ethyl acetate and then acidified to pH 2 – 3 with 2N HCI. The acidified aqueous layer was extracted with ethyl acetate. The ethyl acetate extracts were washed with brine, dried (Na2S04) and concentrated to afford 20 g of product as a yellow solid (43% yield). 1 H NMR (400 MHz, CDCI3) δ ppm 2.20 (m, 2H), 3.89 (m, 1 H), 4.01 (m, 3H), 5.05 (m, 1 H), 6.48 (d, J=7.6, 1 H). 6.92 (d, J=7.6, 1 H), 7.37 (t, J=7.6, 1 H); LRMS m/z 222 (m+1 ).

4-{4-[(R)-(Tetrahydro-furan-3-yl)oxy]-benzo[d]isoxazol-3-yloxymethyl}-piperidine-1-carboxylic acid tert-butyl ester: Diethyl azodicarboxylate (15.6 g, 0.09 mol) was added to a mixture of 4-[(R)-(tetrahydro-furan-3-yl)oxy]-benzo[d]isoxazol-3-ol (10 g, 0.045 mol), 4-hydroxymethyl-piperidine-1 -carboxylic acid tert-butyl ester (1 1.6 g, 0.054 mol) and triphenylphosphine (23.5 g, 0.09 mol) in 300 mL THF. After the addition was complete the mixture was heated at reflux for 18 h. After concentration in vacuo, the crude product was purified on a silica gel flash column, eluting with petroleum ether/ ethyl acetate (15:1 -» 5:1 ) to afford 22 g of the product as an oil (51 % yield). 1 H NMR (400 MHz, CDCI3) δ ppm 1.25 (m, 2H), 1.39 (s, 9H), 1.76 (m, 2H), 1.99 (m, 1 H). 2.15 (m, 2H), 2.70 (bt, J=1 1.6, 2H), 3.95 (m, 4H). 4.13 (m, 2H). 4.34 (d J=6.4, 2H), 4.98 (m, 1 H), 6.43 (d, J=8, 1 H), 6.93 (d, J=8, 1 H), 7.31 (t, J=8, 1 H).

3-(Piperidin-4-ylmethoxy)-4-[(R)-(tetrahydro-furan-3-yl)oxy]-benzo[d]isoxazole: A 0°C solution of 4-{4-[(R)-(tetrahydro-furan-3-yl)oxy]-benzo[d]isoxazol-3-yloxymethyl}-piperidine-1 -carboxylic acid tert-butyl ester in 500 mL ether was treated with a saturated solution of HCI (g) in 200 mL ether. After addition was complete, the mixture was warmed to RT and stirred for 16 h. The reaction mixture was filtered. The white solid was washed with ethyl acetate followed by ether and dried to yield 15 g (81 % yield) of the desired product as a white solid. 1 H NMR (400 MHz, CD3OD) 5 ppm 1 .51 – 1.69 (m, 2 H) 2.04 – 2.19 (m, 3 H) 2.22 – 2.37 (m, 2 H) 2.99 – 3.14 (m, 2 H) 3.40 – 3.51 (m, 2 H) 3.85 – 4.02 (m, 4 H) 4.25 – 4.31 (m, 2 H) 5.17 (td, J= >1^ , 1 .56 Hz, 1 H) 6.72 (d, J=8.00 Hz, 1 H) 7.01 (d, J=8.59 Hz, 1 H) 7.47 (t, J=8.20 Hz, 1 H); LRMS m/z 319 (m+1 ).

4-(4-{4-[(R)-(Tetrahydro-furan-3-yl)oxy]-benzo[d]isoxazol-3-yloxymethyl}-piperidin-1-ylmethyl)-tetrahydro-pyran-4-ol: 1 ,6-Dioxa-spiro[2.5]octane (Focus Synthesis; 9.7 g, 0.084 mol) and triethylamine (8.6 g, 0.084 mol) were added to a solution of 3-(piperidin-4-ylmethoxy)-4-[(R)-(tetrahydro-furan-3-yl)oxy]-benzo[d]isoxazole (15 g, 0.042 mol) in 200 mL methanol. The resulting solution was heated at reflux for 18 h. The cooled mixture was concentrated and ethyl acetate and water were added to the residue. The layers were separated and the organic extracts were washed with brine, dried (Na2S04) and concentrated to provide 17 g crude product as a yellow oil. The crude material was purified by prep HPLC to afford 10 g of the desired product as a white solid. (50% yield).

1 H NMR (400 MHz, CDCI3) δ ppm 1.41 -1.63 (m, 6H), 1.71-1.81 (m, 2H), 1 .81 -1 .94 (m, 1 H), 2.17-2.26 (m, 2H), 2.33 (s, 2H), 2.4 (td, J=1 1 .7, 2.3, 2H), 2.92 (d, J=1 1.8, 2H), 3.46 (s, 1 H), 3.71-3.84 (m, 4H), 3.91-4.10 (m, 4H), 4.24 (d, J=5.9, 2H), 5.03-5.08 (m, 1 H), 6.50 (d, J=8.2, 1 H), 7.00 (d, J=8.2, 1 H), 7.38 (t, J=8.2, 1 H);

13C NMR (101 MHz, CDCI3) δ ppm 29.1 1 , 33.10, 35.20, 36.92, 36.96, 56.15, 63.93, 67.14, 67.46, 68.27, 72.94, 74.06, 78.37, 103.17, 105.15, 131.71 , 152.71 , 166.02, 166.28.

PAPER

Two Routes to 4-Fluorobenzisoxazol-3-one in the Synthesis of a 5-HT4Partial Agonist

Groton Laboratories, Worldwide Research & Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340,United States
Porton Fine Chemical, 1 Fine Chemical Zone, Chongqing Chemical Industrial Park, Changshou, Chongqing 401221China
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.5b00389
Publication Date (Web): February 2, 2016
Copyright © 2016 American Chemical Society

http://pubs.acs.org/doi/abs/10.1021/acs.oprd.5b00389

 

Abstract Image

A potent 5-HT4 partial agonist, 1 (PF-04995274), targeted for the treatment of Alzheimer’s disease and cognitive impairment, has been prepared on a multi-kilogram scale. The initial synthetic route, that proceeded through a 4-substituted 3-hydroxybenzisoxazole core, gave an undesired benzoxazolinone through a Lossen-type rearrangement. Route scouting led to two new robust routes to the desired 4-substituted core. Process development led to the efficient assembly of the API on a pilot plant scale under process-friendly conditions with enhanced throughput. In addition, crystallization of a hemicitrate salt of the API with pharmaceutically beneficial properties was developed to enable progression of clinical studies.

REFERNCES

Noguchi, H.; Waizumi, N. Preparation of benzisoxazole derivatives for treatment of 5-HT4 mediated disorders. PCT Int. Appl. WO/2011/101774 A1, 20110825

////////PF-04995274, PF 04995274, PFIZER, Alzheimer’s type dementia, PHASE 1

c1cc2c(c(c1)O[C@@H]3CCOC3)c(no2)OCC4CCN(CC4)CC5(CCOCC5)O


Filed under: PHASE 1, PHASE1, Uncategorized Tagged: Alzheimer's type dementia, PF-04995274, PFIZER, PHASE 1

Frequent Asked Question: Which Level of Ozone is Required in a Hot- or Cold-Stored WFI System?

$
0
0

 

Ozone can be used for the sanitisation of water systems. Which level of concentration is required in water – i.e. in WFI – depends on different factors. Read more about the sanitisation of water systems with ozone.

http://www.gmp-compliance.org/enews_05131_Frequent-Asked-Question-Which-Level-of-Ozone-is-Required-in-a-Hot–or-Cold-Stored-WFI-System_15160,15154,15090,Z-PEM_n.html

The usage of ozone is only senseful in cold water systems. But the decisive question is whether ozone is used for a short-term (1-2 hours) or for a long term (> 6 hours) prevention of microbial growth. In the first case, > 50 ppb ozone is generally sufficient whereas in the second case at least 20 ppb are required.

One should keep in mind that WFI cold systems have basically a higher risk of microbial contamination. The need for ozone in large ring systems or in areas difficult to access may be higher. The ozone levels mentioned should thus be achieved in the return flow. Setting the correct ozone concentration for the system must be done within the scope of the PQ – i.e. validation of the water system.

In contrast, ozonisation of hot-stored WFI systems doesn’t make sense. Indeed, the half-life of ozone considerably decreases at temperatures over 40° Celsius. Moreover, the heat in hot WFI system causes sanitisation itself; the usage of additional ozone wouldn’t be meaningful. The risk of biofilm formation in hot-stored WFI systems is considerably lower.

 

 

 

 

/////


Filed under: Regulatory Tagged: ozone, sanitisation, Water Systems

New Website ECA Validation Group: Version 02 of ECA´s Good Practice Guide on Validation online available

$
0
0

The ECA Validation Group was founded in autumn 2011 by representatives of the pharmaceutical industry after ECA´s 4th European GMP Conference. The mission of the group is to assemble knowledge on Validation, for example by continuously developing ECA´s Process Validation Good Practice Guide. Now the Validation Group launched a new website.

Since the ECA Foundation was established back in 1999 its mission has been to provide support to the Pharmaceutical Industry and Regulators to promote the move towards a harmonised set of GMP and regulatory guidelines by providing information and interpretation of new or updated guidances. For that purpose the ECA has initiated and established various working and interest groups concentrating on different topics.

The ECA Validation Group was founded in autumn 2011 by representatives of the pharmaceutical industry after ECA´s 4th European GMP Conference. This group’s mission is to assemble knowledge on Validation, for example by continuously developing ECA´s Process Validation Good Practice Guide.

Now the group launched its new website to provide members and those interested with information and practical tools. Here’s what you can find on the new website:

  • Current News
  • A news archive
  • Training Courses and Validation Conferences
  • ECA´s Process Validation Good Practice Guide
  • Discussion Forum
  • Presentations
  • Useful links
  • Q&A section
  • Membership information

Members of the group have now the opportunity to download the version 2 of  ECA´s Good Practice Guide on Validation free of charge. On 174 pages the revised Good Practice Guide comprises the main elements of the new validation approach (“what to do”). On the other hand, it also serves as a supporting guide for the implementation (“how to do”).

To find out more we invite you to visit the ECA´s Validation Group new website.

 

//////


Filed under: Uncategorized Tagged: ECA Validation Group, ECA´s, Good Practice Guide, Validation online

When can a Chemical Substance be qualified as a “New Active Substance”? The New Reflection Paper of the EMA gives Information

$
0
0

When can a Chemical Substance be qualified as a “New Active Substance”? The New Reflection Paper of the EMA gives Information

 

A chemical structure with a therapeutic moiety for which no authorisation dossier has been submitted so far and which is – from a chemical structure point of view – not related to any other authorised substances is per se a “NAS” (New Active Substance). But what about a physiologically active molecule present for example in different salts or esters? In which cases do the different derivatives of an effective substance have the NAS status?

The EMA provides clarification to these questions in a new Reflection Paper which was published on 19 January this year. The document entitled  “Reflection paper on the chemical structure and properties criteria to be considered for the evaluation of new active substance (NAS) status of chemical substances” describes the criteria according to which isomers, mixtures of isomers, complexes, derivatives, esters, ethers, salts and other solid forms of  physiologically active molecules can be classified as “NAS “. If an applicant claims the NAS status of a substance to the regulatory authority in the centralised (CP) or decentralised procedure (MRP/DCP), the authority will first check whether the claim is justified. Afterwards – in case of a positive decision – the usual review of the application dossier will be performed.

http://www.gmp-compliance.org/enews_5189_When-can-a-Chemical-Substance-be-qualified-as-a-%22New-Active-Substance%22-The-New-Reflection-Paper-of-the-EMA-gives-Information_n.html

The applicant can refer to the criteria described in this Reflection Paper to substantiate his/ her claim of a NAS status. In general, the evidence has to be brought for the derivative in question that it differs significantly  in properties with regard to efficacy and /or safety from the already approved active substance.

The scope of this Reflection Papers covers neither biological and biotechnological active substances nor active substances to be included in radiopharmaceuticals.

//////


Filed under: Regulatory Tagged: chemical substance, EMA, New Active Substance

WO 2016012539, Tadalafil , New patent, KRKA, D.D., NOVO MESTO

$
0
0

WO 2016012539,  A PROCESS FOR THE PREPARATION OF CGMP-PHOSPHODIESTERASE INHIBITOR AND ORAL PHARMACEUTICAL FORMULATION COMPRISING TADALAFIL CO-PRECIPITATES

KRKA, D.D., NOVO MESTO [SI/SI]; Smarjeska cesta 6 8000 Novo mesto (SI)

BARIC, Matej; (SI).
BENKIC, Primoz; (SI).
BOMBEK, Sergeja; (SI).
KRASOVEC, Dusan; (SI).
SKRABANJA, Vida; (SI).
VRECER, Franc; (SI).
BUKOVEC, Polona; (SI).
HUDOVORNIK, Grega; (SI).
KROSELJ, Vesna; (SI)

The present Invention relates to an improved process for preparation of tadalafil and crystallization and/or purification thereof, wherein the processes are conducted at increased pressure. The invention relates also to a process for preparation of tadalafil co-precipitates and to a solid pharmaceutical composition comprising tadalafil co-precipitates and at least one water soluble diluent and/or water insoluble non-swellable diluent, wherein the composition is substantially free of water insoluble swellable diluents

 

 

The present invention relates to a process for the preparation of CGMP-phosphodiesterase inhibitor, particularly tadalafil, a method for production co-precipitate thereof and to solid oral pharmaceutical formulations comprising tadalafil co-precipitate.

 

Tadalafil, chemically known as (6R-trans)-6-(1,3-benzodioxol-5-il)-2,3,6,7,12,12a-hexahydro-2-methyl-pyrazino.1′, 2′:1,6]pyrido[3,4-b]indole-1,4-dione, is a potent and selective inhibitor of the cyclic guanosine monophosphate (cGMP) – specific phosphodiesterase enzyme PDE5. It is shown below as structural formula I:

Tadalafil is marketed under the tradename CIALIS* and is used for the treatment of erectile dysfunction. The product is available as a film-coated tablet for oral administration containing 2.5, 5, 10 and 20 mg of active ingredient and the following inactive ingredients: lactose monohydrate, hydroxypropylcellulose, sodium lauryl sulfate, croscarmellose sodium, microcrystaliine cellulose, magnesium stearate, hypromellose, triacetin, titanium dioxide (E171), iron oxide (E172) and talc.

Tadalafil is practically insoluble in water and very slightly soluble in organic solvent such as ethanol, methanol and acetone.

Problems associated with low solubility of tadalafil in ethanol and most of other organic solvents resulted in the need of large quantities of solvents required to perform synthesis and crystallization of tadalafil at industrial scale, which have unwanted technological, environmental and economical impact.

US Patent No. 5 859 006 describes the synthesis of the tadalafil and its intermediate (A) which involves reacting D-tryptophan methyl ester with a piperonal in the presence of dichloromethane and trifluoroacetic acid which provides a mixture of desired cis and undesired trans isomer of intermediate A with poor selectivity. The isomers are further separated by column chromatography. The cis isomer is further reacted with chloroacetyl chloride in chloroform, providing another intermediate of tadalafil (B) which reacted with methylamine to give tadalafil of formula (1) in methanol slurry requiring an additional purification step by flash chromatography.

An improved process in the synthesis of tadalafil via modified Pictet-Spengler reaction is described in WO 04/011463 in which D-tryptophan methyl ester hydrochloride and piperonal are condensed in anhydrous isopropyl alcohol to provide hydrochloride of intermediate A. After isolation of desirable cis isomer, the product is further reacted with chloroacetyl chloride and then with methylamine in THF to give tadalafil.

Therefore there still exists a need for an improved process for a synthesis and purification of tadalafil, which would overcome the disadvantages of the prior art processes.

Low solubility of tadalafil in aqueous solutions is further disadvantageous because in vivo absorption is typically dissolution rate-limited which may result in poor bioavailability of the drug. Different approaches in the processes of preparation of pharmaceutical compositions have been applied to overcome the poor solubility.

For example, EP 1 200 092 Bl describes a pharmaceutical composition of free drug particulate form of tadalafil wherein at least 90% of the particles have a particle size of less than about 40 μm as well as composition comprising tadalafil, wherein the compound is present as solid particles not embedded in polymeric co-precipitate. Apparently, preferably at least 90% of the particles have a particle size of less than 10 μm. The technological drawback of such small particles is possible chargeability and secondary agglomeration due to increased surface energy which can cause problems during the micronization and further processing.

WO 2008/134557 describes another approach to overcome the low-solubility problem by pharmaceutical composition comprising starch and tadalafil characterized by particle size having d(90) greater than 40 μm wherein the weight ratio of starch to tadalafil is 4.5 to 1 or greater. Apparently, the preferred ratio is at least 15 to 1.

Yet another approach to overcome the low-solubility problem is to use a “co-precipitate” of tadalafil and a carrier or excipient. For example, EP 828 479 Bl describes a solvent based process wherein tadalafil and a carrier are co-precipitated with a medium in which the tadalafil and carrier are substantially insoluble. EP 828 479 describes a solvent based process wherein tadalafil and hydroxypropyl methylcellulose phthalate are co-precipitated in weakly acidic medium from a combination of non-aqueous water miscible solvent and water. However, pharmaceutical composition prepared according to EP 828479 exhibit deviations in release rate of tadalafil which was due to poor reproducibility of a process for preparation of co-precipitate. It was found that precipitation in acidic media causes unwanted degradation of hydroxypropyl methylcellulose phthalate and that precipitation at higher temperatures does not produce desired product.

WO 2008/005039 also describes a solid composite including tadalafil being in intimate contact with a carrier. The carriers include hydrophilic polymers such as povidone, cellulose derivatives, polyethylene glycol and polymethacrylates. The compositions are prepared by combining tadalafil with hydrophilic polymer and removal of the solvent by evaporation.

WO 2010/115886 describes an adsorbate comprising poorly soluble active ingredient with a particulate and/or porous carrier wherein the adsorbate is prepared by using non-polar solvent. Apparently, the solvents used are selected from the group of chlorinated hydrocarbon (dichloromethane or trichloromethane), diisopropylether and hexane, which is also the main drawback of this solution.

Co-precipitates of phosphodiesterase-5-inhibitor and copolymer of different acrylic acid derivatives are described in WO 2011/012217. The procedures described involve the use of tetrahydrofurane.

Poor solubility can also be solved with co-crystals. WO 2010/099323 discloses crystalline molecular complexes of tadalafil with co-former selected from the group of a short to medium chain organic acids, alcohols and amines.

WO 2012/107541 and WO 2012/107092 disclose co-granulate of tadalafil with cyclodextrines.

WO 2014/003677 discloses a pharmaceutical composition comprising solid dispersion particles containing tadalafil and a dispersing component, which composition further comprises a solubilizer.

Based on the above, there is still a need for an improved dosage form containing tadalafil and improved technological process for the preparation thereof.

 

The process for preparing tadalafil according to a preferred embodiment of the present invention is disclosed in Scheme 1.

Scheme 1

 

Example 1: Synthesis of tadalafil intermediate B via intermediate A

D-tryptophan methyl ester hydrochloride (9g) and piperonai (6g) was suspended in acetonitrile (60mL). The reaction mixture was stirred and heated at about 105*C for three to five hours in an autoclave. The reaction suspension was cooled to ambient temperature and aqueous solution (60m L) of sodium carbonate (4.1g) was added. The mixture was then cooled in an ice bath and the solution of chloroacetyl chloride (5.1mL) in acetonitrile was slowly added to the reaction mixture. A solid was obtained, filtered and washed twice with aqueous solution of acetonitrile. The crude product was dried, and intermediate B (13.4g) with a purity of 97% (HPLC area%) was obtained.

Example 1A:

D-tryptophan methyl ester hydrochloride (8.2kg) and piperonai (5.1kg) was suspended in acetonitrile (55L). The reaction mixture was stirred and heated at about to 105″C for three hours in the reactor vessel. The reaction suspension was cooled to ambient temperature and aqueous solution (55L) of sodium carbonate (4.8kg) was added. The mixture was then cooled in an ice bath and the solution of chloroacetyl chloride (5.2L) was slowly added to the reaction mixture at 5-10°C. A solid was obtained, centrifuged and washed twice with aqueous solution of acetonitrile (2x 121). The crude product was dried at temperature up to 50″C, and intermediate B (12.3kg) with a purity of 98% (HPLC area%) was obtained.

Comparative example 1:

D-tryptophan methyl ester hydrochloride (9.0g) and piperonai (5.84g) was suspended in acetonitrile (60mL). The reaction mixture was stirred and heated at about to 80-85’C for 15-20 hours in the reactor vessel. The reaction suspension was cooled to 0-10°C. The Intermediate A was then isolated on centrifuge and was dried at temperature up to 60°C.

The isolated dried Intermediate A (12,8g) was charged into reactor and suspended with ethyl acetate. The aqueous solution (60mL) of sodium carbonate (5.3g) was added to precooied suspension of Intermediate A. The chloroacetyl chloride (3.4mL) was slowly added to the above reaction mixture. The solid was obtained, centrifuge and washed twice with water (2x 10mL). The crude product was dried at temperature up to 70°C, and intermediate B (11.8g) with a purity of 99% (HPLC area%) was obtained.

Example 2: Synthesis oftadalafil

Intermediate B (4g) obtained in Example 1 and 40% aqueous methylamine solution (1.6mL) were dissolved in 70% aqueous solution of 2-propanol (120mL) while heating in a closed reaction vessel above the reflux temperature (110-120°C) for two to five hours. The solution was hot filtered and cooled on an ice bath. The precipitated product was filtered and dried. The purity of the product was 99.9% (HPLC area%) and the particle distribution of the product was D(90) of about 144 microns.

Example 2A: Synthesis of tadalaf il

Intermediate B (12.3kg) obtained in Example 1A and 40% aqueous methylamine solution (4.76L) were dissolved in 70% aqueous solution of 2-propanol (402L) while heating in a closed reaction vessel above the reflux temperature (110-120°C) for three hours. The solution was hot filtered and cooled on an ice bath. The precipitated product was filtered and dried. The final product (9.8kg) with a purity of more than 99.99% (HPLC area%) and the particle distribution of the product was D(90) of about 155 microns was obtained.

Comparative example 2:

Intermediate B (10g) obtained in the above comparative example 1 and 31% ethanolic methylamine solution (12.3mL) were suspended in absolute ethanol (150mL). The suspension

was heated up to 55°C for 3 – 6 hours. The suspension was cooled on an ice bath. The product was filtered and dried. The crude product (8.22g) with a purity of more than 99.9% (HPLC area%) was obtained and crystallized from hot DMSO solution. The product Is crystallized with addition of water.

Example 3: Recrystallization of tadalaf il

Tadalafil (700g) (99% purity) was suspended in 70% aqueous solution of 2-propanol (24.6L) and suspension was heated to about 110°C in an autoclave at pressure of 0.31MPa until the material was dissolved. The obtained solution was then hot filtrated and cooled to about 10°C. The isolated tadalafil (660g) has a purity of 99.95% (HPLC area%) and the particle distribution D(90) of about 144 microns.

Example 3A: Recrystallization of tadalafil

Tadalafil (5g) (99% purity) was suspended in 70% aqueous solution of acetone (lOOmL) and suspension was heated to about 90°C in an autoclave at pressure of 0.28MPa until the material was dissolved. The obtained solution was then hot filtrated and cooled to about 10°C. The isolated tadalafil (4.44g) has a purity of 99.99% (HPLC area%).

Example 3B: Recrystallization of tadalafil

Tadalafil (4g) (99% purity) was suspended in 70% aqueous solution of acetonitrile (lOOmL) and suspension was heated to about 85°C in an autoclave at pressure of 0.2MPa until the material was dissolved. The obtained solution was then hot filtrated and cooled to about 10°C. The isolated tadalafil (3g) has a purity of 99.99% (HPLC area%).

Example 3C: Recrystallization of tadalafil

Tadalafil (5g) (99% purity) was suspended in 70% aqueous solution of tetrahydrofuran (60mL) and suspension was heated to about 120″C in an autoclave at pressure of 0.3MPa until the material was dissolved. The obtained solution was then hot filtrated and cooled to about 10°C. The isolated tadalafil has a purity of 99.99% (HPLC area%).

Comparative example 3:

Tadalafil (lg) (99% purity) was suspended in 2-propanol (200mL) and suspension was heated up to reflux temperature until the material was dissolved. The obtained solution was then hot filtrated and cooled to about lO’C. The crystallized tadalafil was centrifuged and dried in an oven at temperature up to 70°C.

Comparative Example 4: Preparation of tadalafil co-precipitate with HPMCP HP-50, Precipitation at higher temperature

Tadalafil (100 g) and hydroxypropyl methylcellulose phthalate (100 g) were dissolved in a mixture of acetone (2430m L) and water (270mL) at reflux temperature. Solution was hot filtered and added to 0.25 M HCI in water (4150mL) at 65°C. Precipitate was collected by vacuum filtration, washed with water and dried in vacuum tray dryer up to 70°C. Dry material was milled by a pin mill. HPLC assay of tadalafil was 48.5 %; average particle size of co-precipitate was 53 μm, specific surface area 2.5 m2/g-

Example 5: Preparation of tadalafil co-precipitate with HPMCP HP-50

Tadalafil (1 kg) and hydroxypropyl methylcellulose phthalate (1 kg) were dissolved in mixture of acetone (20L) and water (3 L) at 54°C and under pressure O.lMPa. Solution was hot filtered and added to water (42 L) at 2°C. Suspension was heated up to reflux and acetone was distilled off. Tadalafil co-precipitate was collected by pressure filtration and dried in vacuum dryer. Dry material was milled by a pin mill. HPLC assay of tadalafil was 53.5%.

Example 6: Preparation of tadalafil co-precipitate with HPMCP HP-50

Tadalafil (1 kg) and hydroxypropyl methylcellulose phthalate (1 kg) were dissolved in mixture of acetone (20 L) and water (3 L) at 54°C and under pressure O.lMPa. Solution was hot filtered and added to water (42 L) at 2°C. Suspension was heated up to reflux and acetone was distilled off. Tadalafil co-precipitate was collected by centrifuge and dried in a fluid bed dryer. Dry material was milled by a pin mill. HPLC assay of tadalafil was 52.5 %.

3

Example 7: Preparation of tadalafil co-precipitate with HPMCP HP-50

Tadalafil (0.786 kg) and hydroxypropyl methylcellulose phthaiate (1.140 kg) were dissolved in a mixture of acetone (24L) and water (2.3 L) at 54°C and under pressure 0.1MPa. Solution was filtered hot and added to water (42 L) at 2°C. Suspension was collected by centrifuge and dried in a vacuum tray dryer up to 70°C. Dry material was milled by a pin mill. HPLC assay of tadalafil was 43.5 %, average particle size of co-precipitate was 49 μm, specific surface area 31.0 m2/g-

Example 8: Preparation of tadalafil co-precipitate with HPMCP HP-50

Tadalafil (2 g) and hydroxypropyl methylcellulose phthaiate HP 50 (2 g) were dissolved in a mixture of acetone (48.5mL) and water (5.5mL) at reflux temperature. To obtained solution crospovidone (lg) was added. Obtained suspension was co-precipitated in water (83mL) at 2°C. Obtained material was collected with a vacuum filter and dried in vacuum dryer up to 90°C. HPLC assay of tadalafil 39.9%. Yield was 90%.

Example 9: Preparation of tadalafil co-precipitate with HPMCP HP-50

Tadalafil (2 g) and hydroxypropyl methylcellulose phthaiate HP 50 (2 g) were dissolved in a mixture of acetone (54mL) and methanol (19mL) at reflux temperature. To obtained solution crospovidone (lg) was added. Obtained suspension was co-precipitated in heptane (83mL) at 0°C. Obtained material was collected with a vacuum filter and dried in vacuum dryer up to 50°C. HPLC assay of tadalafil was 36.1 %. Yield was 90%.

Example 10: Preparation of tadalafil co-precipitate with HPMCP HP-50

Tadalafil (2 g) and hydroxypropyl methylcellulose phthaiate HP 50 (2 g) were dissolved in a mixture of aceton (54mL) and methanol (19mL) at reflux temperature. Obtained solution was co-precipitated in heptane (83mL) at 0°C. Obtained material was collected with a vacuum filter and dried in vacuum dryer up to 50°C. HPLC assay of tadalafil was 36.1 %. Yield was 90%.

Example 11: Preparation of tadalafil co-precipitate with HPMCP HP-50

Tadaiafil (1.3 kg) and hydroxypropyl methylcellulose phthalate {1.53 kg) were dissolved in mixture of acetone (32 L) and water (4 L) at 54°C and 1000 mbar. Solution was hot filtered and added to water (54 L) at 2°C. Tadalafil co-precipitate was collected by decanter centrifuge and dried in a vacuum drier. Dry material (2.4kg) was milled in a pin mill. HPLC assay of tadalafil was 48.8 %; average particle size of co-precipitate was 54 μm and specific surface area 26.1 m2/g<

Example 12: Preparation of tadalafil co-precipitate with hydroxypropyl cellulose

Tadalafil (3g) and Klucel ELF (3g) was dissolved in a mixture of acetone (73mL) and water (8mL) at 50°C. Solution was hot filtered and added to 125mL water at 90°C. After that acetone was distilled off at 65°C and suspension was stirred for additional hour. Precipitated material was filtered using preheated filter funnel and dried at 80°C. Yield 3.8 g, HPLC assay was 50.0%.

Example 13: Preparation of tadalafil co-precipitate with hydroxypropyl cellulose

Tadaiafil (3g) and Klucel ELF (3g) was dissolved in a mixture of acetone (73mL) and water (8m L) at 50°C. Solution was hot filtered and added to 125m L water at 90°C with dissolved lactose (14g) at 90°C. After that acetone was distilled off at 65°C and suspension was stirred for additional hour. Precipitated material was filtered using preheated filter funnel and dried at 80°C. Yield 5 g, HPLC assay was 48.8%.

Examples of tablets prepared according to the present Invention

Example Fl: Tablets containing tadalafil co-precipitate with HPMCP HP-50 prepared in accordance with Example 11 with water soluble mannitol and without swellable water insoluble diluents

Tadalafil co-precipitate with HPMCP HP-50 was homogeneously mixed with mannitol, croscarmellose sodium and sodium lauryl sulphate. The magnesium stearate was added and mixed. The resultant blend was compressed into tablets. Dissolution profile of the example is shown in Figure 1.

Example F2: Tablets containing tadalafil co-precipitate with HPC prepared in accordance with Example 13 with water soluble mannitol and without swellable water insoluble diluents

Tadalafil co-precipitate with HPC was homogeneously mixed with mannitol, croscarmellose sodium and sodium lauryl sulphate. The magnesium stearate was added and mixed. The resultant blend was compressed into tablets. Dissolution profile of the example is shown in Figure 1.

Example F3: Tablets containing tadalafil co-precipitate with HPMCP with water soluble spray-dried lactose and without swellable water insoluble diluents

Tadaiafil co-precipitate with HPMCP was homogeneously mixed with spray-dried lactose, starch 1500 and sodium lauryi sulphate. The magnesium stearate was added and mixed. The resultant blend was compressed into tablets.

Example F4: Tablets containing tadalafil co-precipitate with HPMCP with water insoluble non-swellable anhydrous dibasic calcium phosphate and without swellable water insoluble diluents

Tadalafil co-precipitate with HPMCP was homogeneously mixed with calcium phosphate, croscarmellose sodium and sodium lauryi sulphate. The magnesium stearate was added and mixed. The resultant blend was compressed into tablets.

Comparative examples of tablets containing microcrvstalline cellulose

Comparative example F5: Tablets containing tadalafil co-precipitate with HPMCP HP-50 with water soluble mannitol and water insoluble swellable microcrvstalline cellulose as diluent

Tadalafil co-precipitate with HPMCP HP-50 was homogeneously mixed with mannitol, microcrystalline cellulose, croscarmellose sodium and sodium lauryl sulphate. The magnesium stearate was added and mixed. The resultant blend was compressed into tablets. Dissolution profile of the example is shown in Figure 1.

Comparative example F6: Tablets containing tadalafil co-precipitate with HPMCP HP-50 with water soluble lactose anhydrous and water insoluble swellable microcrystalline cellulose as diluent

Tadalafil co-precipitate with HPMCP HP-50 was homogeneously mixed with lactose anhydrous, microcrystalline cellulose, croscarmellose sodium and sodium lauryl sulphate. The magnesium stearate was added and mixed. The resultant blend was compressed into tablets. Dissolution profile of the example is shown in Figure 1.

Comparative example F7: Tablets containing tadalafil co-precipitate with HPMCP HP-50 with water soluble lactose monohydrate and spray dried lactose and water insoluble swellable microcrystalline cellulose as diluent

Tadalafil co-precipitate with HPMCP HP-50 was homogeneously mixed with lactose monohydrate, spray dried lactose, microcrystalline cellulose, croscarmeilose sodium and sodium lauryl sulphate. The magnesium stearate was added and mixed. The resultant blend was compressed into tablets. Dissolution profile of the example is shown in Figure 1.

Comparative example F8: Tablets containing tadalafil co-precipitate with HPMCP HP-50 with water insoluble non-swellable calcium phosphate and water insoluble swellable microcrystalline cellulose as diluent

Tadalafil co-precipitate with HPMCP HP-50 was homogeneously mixed with calcium phosphate, microcrystalline cellulose, croscarmellose sodium and sodium lauryl sulphate. The magnesium stearate was added and mixed. The resultant blend was compressed into tablets. Dissolution profile of the example is shown in Figure 1.

Comparative example F9: Tablets containing tadalafil co-precipitate with HPMCP HP-50 with only water insoluble swellable microcrystalline cellulose as diluent

Tadalafil co-precipitate with HPMCP HP-50 was homogeneously mixed with microcrystalline cellulose, croscarmellose sodium and sodium lauryl sulphate. The magnesium stearate was added and mixed. The resultant blend was compressed into tablets. Dissolution profile of the example is shown in Figure 1.

Comparative example F10: Tablets containing tadalafil co-precipitate with HPMCP HP-50 with water insoluble swellable microcrystalline cellulose and cellactose as diluents

Tadalafil co-precipitate with HPMCP HP-50 was homogeneously mixed with microcrystalline cellulose, cellactose, croscarmellose sodium and sodium lauryl sulphate. The magnesium stearate was added and mixed. The resultant blend was compressed into tablets. Dissolution profile of the example F10 is shown in Figure 2, together with dissolution profiles of the same sample, taken after two months at 22°C and 60% RH.

In comparison, dissolution profile of composition according to invention is unaffected by storage at 40°C/75% for one month (Figure 2).

The aforementioned tablet formulations were film-coated with a film-coating dispersion containing:

Figures 1 and 2 show dissolution profiles of tablet formulations comprising tadalafil co-precipitates prepared according to listed examples. Dissolution conditions comprise: basket apparatus (USP I), 100 RPM, 0.1M HCI + 0.2% SDS, 900 mL

 

 

Krka, tovarna zdravil, d.d., Novo mesto 

Raziskovalna in razvojna dejavnost na drugih področjih naravoslovja in tehnologije
 Map of Krka, tovarna zdravil, d.d., Novo mesto
Address: Šmarješka cesta 6, 8501 Novo mesto, Slovenia

/////////WO 2016012539, KRKA, D.D., NOVO MESTO, tadalafil, new patent


Filed under: PATENT, PATENTS Tagged: D.D., KRKA, NEW PATENT, NOVO MESTO, Tadalafil, WO 2016012539

WO 2016012938, New patent, LINACLOTIDE, DR. REDDY’S LABORATORIES LIMITED,

$
0
0

Linaclotide structure.svg

WO2016012938,  IMPROVED PROCESS FOR PREPARATION OF AMORPHOUS LINACLOTIDE

DR. REDDY’S LABORATORIES LIMITED [IN/IN]; 8-2-337, Road No 3, Banjara Hills, Telangana, INDIA Hyderabad 500034 (IN)

KALITA, Dipak; (IN).
NIVRUTTI, Ramrao Jogdand; (IN).
BALAKUMARAN, Kesavan; (IN).
DESHMUKH, Shivshankar; (IN).
VUTUKURU, Naga Chandra Sekhar; (IN).
KASINA, Vara Prasad; (IN).
NALAMOTHU, Sivannarayana; (IN).
VILVA, Mohan Sundaram; (IN).
KHAN, Rashid Abdul Rehman; (IN).
TIRUMALAREDDY, Ramreddy; (IN).
MUSTOORI, Sairam; (IN)

The present application relates to an improved process for the formation of disulfide bonds in linaclotide. The present application also relates to an improved process for the purification of linaclotide.

The present application relates to an improved process for the preparation of amorphous linaclotide. Specifically, the present application relates to an improved process for the formation of disulfide bonds in linaclotide. The present application further relates to a purification process for the preparation of amorphous linaclotide.

INTRODUCTION

Linaclotide is a 14-residue peptide which is an agonist of the guanylate cyclase type-C receptor. Linaclotide may be used for the treatment of chronic constipation and irritable bowel syndrome. Structurally, linaclotide has three disulfide bonds and they are present between Cys1-Cys6, Cys2-Cys-10 and Cys5-Cys13. The structure of linaclotide is shown below:

1 2 3 4 5 6 7 8- 9 10 11 12 13 14

Benitez et al. Peptide Science, 2010, Vol. 96, No. 1 , 69-80 discloses a process for the preparation of linaclotide. The process involves the use of 2-chlorotrityl (CTC) resin and 9-fluorenylmethoxycarbonyl (Fmoc) chemistry. The Cys residues are protected by Trt (trityl) group. The amino acids are coupled to one another using 3 equivalents of 1 -[bis(dimethylamino)methylene]-6-chloro-1 H-benzotriazolium hexafluorophosphate 3-oxide (HCTU) as coupling agent and 6 equivalents of diisoprpylethylamine (DIEA) as base in dimethylformamide (DMF). The Fmoc group is removed using piperidine-DMF (1 :4). The Cys residues are incorporated using 3 equivalents of Ν,Ν’-diisopropylcarbodiimide (DIPCDI) as coupling agent and 3 equivalents of 1 -hydroxybenzotriazole (HOBt) as an activating agent. After the elongation of the peptide chain, the peptide was cleaved from the solid support (CTC resin) by first treating with 1 % trifluoroacetic acid (TFA) and then with a mixture of TFA, triisoprpylsilane (TIS) and water in the ratio of 95:2.5:2.5. The disulfide bonds are prepared by subjecting the linear peptide to air oxidation in sodium dihydrogen phosphate (100 mM) and guanidine hydrochloride buffer (2 mM).

US2010/261877A1 discloses a process for purification of linaclotide. The process involves first purification of crude peptide by reverse-phase chromatographic purification followed by concentrating the purified pools and dissolving the purified linaclotide in aqueous-isopropanol or aqueous-ethanol and spray-drying the solution to afford pure Linaclotide.

The synthesis of a peptide containing disulfide bridges is difficult for two main reasons; one is potential risk of racemization during the formation of linear chain and the other is mis-folding of the disulfide bridges. Hence, there is a need in the art to a cost-effective process for the preparation of pure linaclotide.

EXAMPLES

Example 1 : Preparation of Crude Linaclotide using polyvinyl polymer bound complex of sulfur trioxide-pyridine

The linear chain of peptide of formula (I) (0.1 g) and polyvinyl polymer bound complex of sulfur trioxide-pyridine (0.062 g) was charged in water (100 mL). The pH of the reaction mass was adjusted to 8.5 to 9 by addition of ammonium hydroxide. The reaction mass was stirred at 25 °C for 15 hours and trifluoroacetic acid (2 mL) was added to the reaction mass to adjust the pH up to 2-2.5. The reaction mass was stirred for 3 hours at the same temperature to afford crude linaclotide.

HPLC Purity: 59.92%

Example 2: Preparation of Crude Linaclotide using DMSO in water

The pH of water (100 ml_) was adjusted to 9.1 by the addition of aqueous ammonia. DMSO (1 ml_) and linear chain of peptide of formula (I) (100 mg) were charged. The reaction mass was stirred for 17 hours at 25 °C and acidified with trifluoroacetic acid to pH 1 .9 and stirred for 8 hours at the same temperature to afford crude linaclotide.

HPLC Purity: 57%

Example 3: Preparation of Crude Linaclotide using DMSO in water

The pH of water (1500 ml_) was adjusted to 9 by the addition of aqueous ammonia. DMSO (15 ml_) and linear chain of peptide of formula (I) (15 g) were charged. The reaction mass was stirred for 17 hours at 25 °C and acidified with acetic acid to pH 1 .9 and stirred for 8 hours at the same temperature to obtain crude linaclotide.

HPLC Purity: 46.02%

Example 4: Preparation of Crude Linaclotide in water

To a mixture of water (1900 mL) and ammonium sulfate (26.4 g), ammonium hydroxide was added drop wise to adjust the pH up to 8.5. Linear chain of peptide of formula (I) (26.4 g) was added and the reaction mass was stirred for 8 hours at 25 °C. Trifluoroacetic acid (20 mL) was added drop wise and the reaction mixture was stirred for 15 hours at 25 °C to afford crude linaclotide.

HPLC Purity: 63.38%

Example 5: Preparation of Crude Linaclotide using a complex of pyridine-sulfur trioxide

Linear chain of peptide of formula (I) (0.2 g) was added to water (250 mL) and the pH of the reaction mass was adjusted to 8.91 by the drop wise addition of aqueous ammonia. A complex of pyridine-sulfur trioxide (0.124 g) was added to the reaction mass and stirred for 16 hours at 25 °C. Another lot of complex of pyridine-sulfur trioxide (0.124 g) was added to the reaction mass and stirred for 5 hours at 25 °C to afford crude linaclotide.

Example 6: Preparation of Crude Linaclotide using guanidine hydrochloride

To a solution of sodium bicarbonate (0.89 g) in water (100 mL), cysteine (0.363 g), cysteine (0.072 g) and guanidine hydrochloride (9.50 g) were charged. Acetonitrile (15 mL) and linear chain of peptide of formula (I) (0.1 g) was added to the reaction mass.

The reaction mass was stirred for 3 hours at 25 °C and trifluoroacetic acid (2 mL) was added. The reaction mass was stirred for 18 hours at the same temperature. Another lot of trifluoroacetic acid (2 mL) was added to the reaction mass and stirred for 18 hours at the same temperature to afford crude linaclotide.

Example 7: Preparation of Crude Linaclotide using Clear-OX™

Pre-conditioned Clear-Ox™ (0.5 g) was added to a solution of ammonium sulfate (1 .32 g) in water (100 mL) of pH 8.5, adjusted by addition of ammonium hydroxide. The linear chain of peptide of formula (I) (0.1 g) was added to the reaction mass and stirred for 3 hours at 25 °C. Another lot of Pre-conditioned Clear-Ox™ (0.5 g) was added to the reaction mass and stirred for 1 .30 hours. Trifluoroacetic acid (2 mL) was added to the reaction mass and stirred for 16 hours at the same temperature to afford crude linaclotide.

HPLC Purity: 67.5%

Example 8: Preparation of Crude Linaclotide using reduced Glutathione

To a mixture of ammonium sulphate (5.28 g) in water (400 mL) and isopropyl alcohol (400 mL), reduced glutathione (0.248 g) was added and the pH was adjusted to 8.5 by using aqueous ammonia. The linear chain of peptide of formula (I) (0.81 g) was added to the reaction mixture and stirred at ambient temperature for 17 hours. Isopropyl alcohol was evaporated under vacuum to afford crude linaclotide.

HPLC Purity: 69.56%%

Example 9: Preparation of Crude Linaclotide using DMSO and air bubbling

To a mixture of water (95 mL) and ammonium sulfate (1 .32 g), ammonium hydroxide was added drop wise to adjust the pH up to 8.5. Linear chain of peptide of formula (I) (0.1 g) and DMSO (5 mL) was added and the reaction mass was stirred for 20 hours at 25 °C with continuous air bubbling. Trifluoroacetic acid (2 mL) was added to the reaction mass and stirred for 19 hours with continuous air bubbling at the same temperature to afford the title product.

HPLC Purity: 59.1 1 %

Example 10: Preparation of Crude Linaclotide using solid supported TEMPO

To a mixture of water (100 mL) and silica bound TEMPO (0.01 g), linear chain of peptide of formula (I) (0.1 g) and sodium hypochlorite solution (1 mL) were added and the reaction mass was stirred 18 hours at 25 °C. Another lot of sodium hypochlorite solution (0.5 mL) was added to the reaction mass and stirred for further 7 hours at the same temperature to afford title product.

HPLC Purity: 42.70%………………see more in patent

 

 

Linaclotide
Linaclotide structure.svg
Systematic (IUPAC) name
L-Cysteinyl-L-cysteinyl-L-glutamyl-L-tyrosyl-L-cysteinyl-L-cysteinyl-L-asparaginyl-L-prolyl-L-alanyl-L-cysteinyl-L-threonylglycyl-L-cysteinyl-L-tyrosine cyclo(1-6),(2-10),(5-13)-tris(disulfide)
Clinical data
Trade names Linzess
Licence data US FDA:link
Pregnancy
category
  • US: C (Risk not ruled out)
Legal status
Routes of
administration
Oral
Identifiers
CAS Number 851199-59-2 Yes
ATC code A06AX04
PubChem CID 16158208
IUPHAR/BPS 5017
ChemSpider 17314504 
UNII N0TXR0XR5X Yes
KEGG D09355 Yes
Chemical data
Formula C59H79N15O21S6
Molar mass 1526.74 g/mol

///////WO 2016012938, DR. REDDY’S LABORATORIES LIMITED , Telangana, INDIA , Hyderabad, LINACLOTIDE, new patent

smiles         O=C(O)[C@@H](NC(=O)[C@H]4NC(=O)CNC(=O)[C@@H](NC(=O)[C@H]2NC(=O)[C@@H](NC(=O)[C@H]5N(C(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](N)CSSC1)CSSC2)CCC(=O)O)Cc3ccc(O)cc3)CSSC4)CC(=O)N)CCC5)C)[C@H](O)C)Cc6ccc(O)cc6


Filed under: PATENT, PATENTS Tagged: DR. REDDY'S LABORATORIES LIMITED, hyderabad, INDIA, Linaclotide, NEW PATENT, Reddys, TELANGANA, WO 2016012938

Mr. Glenn Saldanha Chairman & and Managing Director, Glenmark Pharmaceuticals Limited, conferred ‘India Pharma Leader Award’ by the Government of India

$
0
0

glen1

Mr. Glenn Saldanha Chairman & and Managing Director, Glenmark Pharmaceuticals Limited, conferred ‘India Pharma Leader Award’ by the Government of India

Indian Ministry for Chemicals and Fertilizers on Thursday conferred 1st India Pharma awards to 12 Indian drug companies under various categories to motivate Indian Pharma and medical devices industries.

As per reports, Union Minister for Chemicals and Fertilizers Ananth Kumar conferred 1st India Pharma awards in Bengaluru on Thursday evening.

Speaking on the occasion, Ananth Kumar said that the Pharma Industry in the country is growing at a higher rate than GDP and needs to be complimented for this.
“Indian government would like domestic Pharma industry to be global leaders,” he said, adding that the government and the Pharma entrepreneurs will work together as team Pharma India, with the aim of serving millions of ailing people. He also assured full support to the industry.

The awards constituted by Department of Pharmaceuticals were given to outstanding Pharma Industries to motivate Indian Pharma and medical devices industries. The winner of the awards are:

CATEGORY OF AWARD NAME OF THE COMPANY
OVERALL INDIA PHARMA EXCELLENCE AWARD CADILA HEALTHCARE LIMITED

INDIA PHARMA LEADER AWARD GLENN SALDANA, CHAIRMAN & MANAGING DIRECTOR, GLENMARK PHARMACEUTICALS LIMITED

INDIA PHARMA COMPANY OF THE YEAR AWARD LUPIN LIMITED

INDIA PHARMA BULK DRUG COMPANY OF THE YEAR AWARD SMS PHARMACEUTICALS LTD

INDIA PHARMA INNOVATION OF THE YEAR AWARD CADILA HEATHCARE LIMITED

INDIA PHARMA RESEARCH AND DEVELOPMENT ACHIEVEMENT AWARD SUN PHARMACEUTICALS INDUSTRIES LTD

INDIA PHARMA CORPORATE SOCIAL RESPONSIBILITY PROGRAMME OF THE YEAR AWARD ABBOTT INDIA LIMTED

INDIA PHARMA MEDICAL DEVICES COMPANY OF THE YEAR AWARD HARSORIA HEALTHCARE PVT LTD

INDIA PHARMA EXPORT COMPANY OF THE YEAR AWARD CAMUS PHARMA PVT LTD

INDIA PHARMA BULK DRUG EXPORT COMPANY OF THE YEAR SMS PHARMACEUTICALS LTD

INDIA PHARMA MEDICAL DEVICES EXPORT COMPANY OF THE YEAR AWARD SCOPE MEDICAL DEVICES PVT LTD

SPECIAL AWARD: PHARMA PSU COMPANY OF THE YEAR AWARD KARNATAKA ANTIBIOTICS AND PHARMACEUTICALS LIMITED, A PSU UNDER DEPARTMENT OF PHARMACEUTICALS

CLIP

India Pharma Awards given by Minister of Chemicals and …

pib.nic.in/newsite/PrintRelease.aspx?relid=134291

Jan 8, 2016 – OVERALL INDIA PHARMA EXCELLENCE AWARD. CADILA HEALTHCARE LIMITED. INDIA PHARMA LEADER AWARD. SHRI GLENN …

Press Information Bureau
Government of India
Ministry of Chemicals and Fertilizers
08-January-2016 12:49 IST

India Pharma Awards given by Minister of Chemicals and Fertilizers

The Union Minister for Chemicals and Fertilizers, Shri Ananth Kumar gave away the 1st India Pharma awards in Bengaluru on Thursday evening. The awards constituted by Department of Pharmaceuticals were given to outstanding Pharma Industries to motivate Indian Pharma and medical devices industries. The winner of the awards are:

CATEGORY OF AWARD NAME OF THE COMPANY
OVERALL INDIA PHARMA EXCELLENCE AWARD CADILA HEALTHCARE LIMITED
INDIA PHARMA LEADER AWARD SHRI GLENN SALDANA, CHAIRMAN & MANAGING DIRECTOR, GLENMARK PHARMACEUTICALS LIMITED
INDIA PHARMA COMPANY OF THE YEAR AWARD LUPIN LIMITED
INDIA PHARMA BULK DRUG COMPANY OF THE YEAR AWARD SMS PHARMACEUTICALS LTD
INDIA PHARMA INNOVATION OF THE YEAR AWARD CADILA HEATHCARE LIMITED
INDIA PHARMA RESEARCH AND DEVELOPMENT ACHIEVEMENT AWARD SUN PHARMACEUTICALS INDUSTRIES LTD
INDIA PHARMA CORPORATE SOCIAL RESPONSIBILITY PROGRAMME OF THE YEAR AWARD ABBOTT INDIA LIMTED
INDIA PHARMA MEDICAL DEVICES COMPANY OF THE YEAR AWARD HARSORIA HEALTHCARE PVT LTD
INDIA PHARMA EXPORT COMPANY OF THE YEAR AWARD CAMUS PHARMA PVT LTD
INDIA PHARMA BULK DRUG EXPORT COMPANY OF THE YEAR SMS PHARMACEUTICALS LTD
INDIA PHARMA MEDICAL DEVICES EXPORT COMPANY OF THE YEAR AWARD SCOPE MEDICAL DEVICES PVT LTD
SPECIAL AWARD: PHARMA PSU COMPANY OF THE YEAR AWARD KARNATAKA ANTIBIOTICS AND PHARMACEUTICALS LIMITED, A PSU UNDER DEPARTMENT OF PHARMACEUTICALS

Speaking on the occasion the Shri Ananth Kumar said that the Pharma Industry in the country is growing at a higher rate than GDP and needs to be complimented for this.  He said that the government would like domestic Pharma industry to be global leaders. He said that the government and the Pharma entrepreneurs will work together as team Pharma India, with the aim of serving millions of ailing people.  Shri Ananth Kumar assured full support to the industry.

str1

str1

References

http://www.pharmaceuticals.gov.in/sites/default/files/First%20India%20Pharma%20Awards%202015.pdf

http://pib.nic.in/newsite/PrintRelease.aspx?relid=134291

http://www.glenmarkpharma.com/common/pdf/Glenn_Saldanha-Profile.pdf

http://pharmaceuticals.gov.in/sites/default/files/First%20India%20Pharma%20Awards%202015%20%20Final.pdf

http://www.pharmaceuticals.gov.in/sites/default/files/First%20India%20Pharma%20Awards%202015.pdf

////


Filed under: GLENMARK, glenmark, SPOTLIGHT Tagged: GLEN SALDANHA, GLENMARK, Glenn Saldanha, Government of India, India Pharma Leader Award

Patiromer

$
0
0

Patiromer

1260643-52-4 FREE FORM

CAS 1208912-84-8

(C10 H10 . C8 H14 . C3 H3 F O2 . 1/2 Ca)x

2-​Propenoic acid, 2-​fluoro-​, calcium salt (2:1)​, polymer with diethenylbenzene and 1,​7-​octadiene

RLY5016

RELYPSA INNOVATOR

Patiromer is a powder for suspension in water for oral administration, approved in the U.S. as Veltassa in October, 2015. Patiromer is supplied as patiromer sorbitex calcium which consists of the active moiety, patiromer, a non-absorbed potassium-binding polymer, and a calcium-sorbitol counterion. Each gram of patiromer is equivalent to a nominal amount of 2 grams of patiromer sorbitex calcium. The chemical name for patiromer sorbitex calcium is cross-linked polymer of calcium 2-fluoroprop-2-enoate with diethenylbenzene and octa-1,7-diene, combination with D-glucitol. Patiromer sorbitex calcium is an amorphous, free-flowing powder that is composed of individual spherical beads.

Veltassa is a powder for suspension in water for oral administration. The active ingredient is patiromer sorbitex calcium which consists of the active moiety, patiromer, a non-absorbed potassium-binding polymer, and a calcium-sorbitol counterion.

Each gram of patiromer is equivalent to a nominal amount of 2 grams of patiromer sorbitex calcium. The chemical name for patiromer sorbitex calcium is cross-linked polymer of calcium 2-fluoroprop-2-enoate with diethenylbenzene and octa-1,7-diene, combination with D-glucitol.

Mechanism of Action

Veltassa is a non-absorbed, cation exchange polymer that contains a calcium-sorbitol counterion. Veltassa increases fecal potassium excretion through binding of potassium in the lumen of the gastrointestinal tract. Binding of potassium reduces the concentration of free potassium in the gastrointestinal lumen, resulting in a reduction of serum potassium levels.

patiromer1

Treatment of Hyperkalemia

Hyperkalemia is usually asymptomatic but occasionally can lead to life-threatening cardiac arrhythmias and increased all-cause and in-hospital mortality, particularly in patients with CKD and associated cardiovascular diseases (Jain et al., 2012; McMahon et al., 2012; Khanagavi et al., 2014). However, there is limited evidence from randomized clinical trials regarding the most effective therapy for acute management of hyperkalemia (Khanagavi et al., 2014) and a Cochrane analysis of emergency interventions for hyperkalemia found that none of the studies reported mortality or cardiac arrhythmias, but reports focused on PK (Mahoney et al., 2005). Thus, recommendations are based on opinions and vary with institutional practice guidelines (Elliot et al., 2010; Khanagavi et al., 2014). Management of hyperkalemia includes reducing potassium intake, discontinuing potassium supplements, treatment of precipitating risk factors, and careful review of prescribed drugs affecting potassium homeostasis. Treatment of life-threatening hyperkalemia includes nebulized or inhaled beta-agonists (albuterol, salbutamol) or intravenous (IV) insulin-and-glucose, which stimulate intracellular potassium uptake, their combination being more effective than either alone. When arrhythmias are present, IV calcium might stabilize the cardiac resting membrane potential. Sodium bicarbonate may be indicated in patients with severe metabolic acidosis. Potassium can be effectively eliminated by hemodialysis or increasing its renal (loop diuretics) and gastrointestinal (GI) excretion with sodium polystyrene sulfonate, an ion-exchange resin that exchanges sodium for potassium in the colon. However, this resin produces serious GI adverse events (ischemic colitis, bleeding, perforation, or necrosis). Therefore, there is an unmet need of safer and more effective drugs producing a rapid and sustained PK reduction in patients with hyperkalemia.

In this article we review two new polymer-based, non-systemic oral agents, patiromer calcium (RLY5016) and zirconium silicate (ZS-9), under clinical development designed to induce potassium loss via the GI tract, particularly the colon, and reduce PK in patients with hyperkalemia.

1. Patiromer calcium

This metal-free cross-linked fluoroacrylate polymer (structure not available) exchanges cations through the gastrointestinal (GI) tract. It preferentially binds soluble potassium in the colon, increases its fecal excretion and reduces PK under hyperkalemic conditions.

The development program of patiromer includes several clinical trials. An open-label, single-arm study evaluated a titration regimen for patiromer in 60 HF patients with CKD treated with ACEIs, ARBs, or beta blockers (clinicaltrials.gov identifier: NCT01130597). Another open-label, randomized, dose ranging trial determined the optimal starting dose and safety of patiromer in 300 hypertensive patients with diabetic nephropathy treated with ACEIs and/or ARBs, with or without spironolactone (NCT01371747). The primary outcomes were the change in PK from baseline to the end of the study. Unfortunately, the results of these trials were not published.

In a double-blind, placebo-controlled trial (PEARL-HF, NCT00868439), 105 patients with a baseline PK of 4.7 mmol/L and HF (NYHA class II-III) treated with spironolactone in addition to standard therapy were randomized to patiromer (15 g) or placebo BID for 4 weeks (Pitt et al., 2011). Spironolactone, initiated at 25 mg/day, was increased to 50 mg/day on day 15 if PK was ≤5.1 mmol/L. Patients were eligible for the trial if they had either CKD (eGFR <60 ml/min) or a history of hyperkalemia leading to discontinuation of RAASIs or beta-blockers. Compared with placebo, patiromer decreased the PK (-0.22 mmol/L, while PK increased in the placebo group +0.23 mmol/L, P<0.001), and the incidence of hyperkalemia (7% vs. 25%, P=0.015) and increased the number of patients up-titrated to spironolactone 50 mg/day (91% vs. 74%, P=0.019). A similar reduction in PK and hyperkalemia was observed in patients with an eGFR <60 ml/min. Patiromer produced more GI adverse events (flatulence, diarrhea, constipation, vomiting: 21% vs 6%), hypokalemia (<4.0 mmol/L: 47% vs 10%, P<0.001) and hypomagnesaemia (<1.8 mg/dL: 24% vs. 2.1%), but similar adverse events leading to study discontinuation compared to placebo. Unfortunately, recruited patients had normokalemia and basal eGFR in the treatment group was 84 ml/min. Thus, this study did not answer whether patiromer is effective in reducing PK in patients with CKD and/or HF who develop hyperkalemia on RAASIs.

A two-part phase 3 study evaluated the efficacy and safety of patiromer in the treatment of hyperkalemia (NCT01810939). In a single-blind phase (part A) 243 patients with hyperkalemia and CKD (102 with HF) on RAASIs were treated with patiromer BID for 4 weeks: 4.2 g in patients with mild hyperkalemia (5.1-<5.5 mmol/L, n=92) and 8.4 g in patients with moderate-to-severe hyperkalemia (5.5-<6.5 mmol/L, n=151). Part B was a placebo-controlled, randomized, withdrawal phase designed to confirm the maintained efficacy of patiromer and the recurrent hyperkalemia following that drug’s withdrawal. Patients (n=107) who completed phase A with a normal PK were randomized to continue on patiromer (27 with HF) or placebo (22 with HF) besides RAASIs for 8 weeks. The primary endpoint was the difference in mean PK between the patiromer and placebo groups from baseline to the end of the study or when the patient first had a PK <3.8 or ≥5.5 mmol/L. In part A patiromer produced a rapid reduction in PK that persisted throughout the study in patients with and without HF (-1.06 and -0.98 mmol/L, respectively; both P<0.001 vs. placebo); three-fourths of patients in both groups had normal PK (3.8-<5.1 mmol/L) at 4 weeks. In part B patiromer reduced PK (-0.64 mmol/L) in patients with or without HF (P<0.001). As compared with placebo, fewer patients, with or without HF, presented recurrent hyperkalemia in the patiromer group or required RAASI discontinuation regardless of HF status (Pitt, 2014). Patiromer was well-tolerated, with a safety profile similar to placebo even in HF patients. The most common adverse events were nausea, diarrhea, and hypokalemia.

INDICATIONS AND USAGE

Veltassa is a potassium binder indicated for the treatment of hyperkalemia.

Veltassa should not be used as an emergency treatment for lifethreatening hyperkalemia because of its delayed onset of action.

Patiromer (USAN, trade name Veltassa) is a drug used for the treatment of hyperkalemia (elevated blood potassium levels), a condition that may lead to palpitations and arrhythmia (irregular heartbeat). It works by binding potassium in the gut.[1][2]

 

Medical uses

Patiromer is used for the treatment of hyperkalemia, but not as an emergency treatment for life-threatening hyperkalemia, because it acts relatively slowly.[2] Such a condition needs other kinds of treatment, for example calcium infusions, insulin plus glucose infusions, salbutamol inhalation, and hemodialysis.[3]

Typical reasons for hyperkalemia are renal insufficiency and application of drugs that inhibit the renin–angiotensin–aldosterone system (RAAS) – e.g. ACE inhibitors, angiotensin II receptor antagonists, or potassium-sparing diuretics – or that interfere with renal function in general, such as nonsteroidal anti-inflammatory drugs (NSAIDs).[4][5]

Adverse effects

Patiromer was generally well tolerated in studies. Side effects that occurred in more than 2% of patients included in clinical trials were mainly gastro-intestinal problems such as constipation, diarrhea, nausea, and flatulence, and also hypomagnesemia (low levels of magnesium in the blood) in 5% of patients, because patiromer binds magnesium in the gut as well.[2][6]

Interactions

No interaction studies have been done in humans. Patiromer binds to many substances besides potassium, including numerous orally administered drugs (about half of those tested in vitro). This could reduce their availability and thus effectiveness,[2] wherefore patiromer has received a boxed warning by the US Food and Drug Administration (FDA), telling patients to wait for at least six hours between taking patiromer and any other oral drugs.[7]

Pharmacology

Mechanism of action

Patiromer works by binding free potassium ions in the gastrointestinal tract and releasing calcium ions for exchange, thus lowering the amount of potassium available for absorption into the bloodstream and increasing the amount that is excreted via the feces. The net effect is a reduction of potassium levels in the blood serum.[2][4]

Lowering of potassium levels is detectable 7 hours after administration. Levels continue to decrease for at least 48 hours if treatment is continued, and remain stable for 24 hours after administration of the last dose. After this, potassium levels start to rise again over a period of at least four days.[2]

Pharmacokinetics

Patiromer is not absorbed from the gut, is not metabolized, and is excreted in unchanged form with the feces.[2]

Physical and chemical properties

The substance is a cross-linked polymer of 2-fluoroacrylic acid (91% in terms of amount of substance) with divinylbenzenes (8%) and 1,7-octadiene (1%). It is used in form of its calcium salt (ratio 2:1) and with sorbitol (one molecule per two calcium ions or four fluoroacrylic acid units), a combination called patiromer sorbitex calcium.[8]

Patiromer sorbitex calcium is an off-white to light brown, amorphous, free-flowing powder. It is insoluble in water, 0.1 M hydrochloric acid, heptane, and methanol.[2][8]

Hyperkalemia Is a Clinical Challenge

Hyperkalemia may result from increased potassium intake, impaired distribution between the intracellular and extracellular spaces, and/or conditions that reduce potassium excretion, including CKD, hypertension, diabetes mellitus, or chronic heart failure (HF) (Jain et al., 2012). Additionally, drugs and nutritional/herbal supplements (Table 1) can produce hyperkalemia in up to 88% of hospitalized patients by impairing normal potassium regulation (Hollander-Rodríguez and Calvert, 2006; Khanagavi et al., 2014).

Although the prevalence of hyperkalemia in the general population is unknown, it is present in 1-10% of hospitalized patients depending on how hyperkalemia is defined (McMahon et al., 2012; Gennari, 2002). Hyperkalemia is a common problem in patients with conditions that reduce potassium excretion, especially when treated with beta-adrenergic blockers that inhibit Na+,K+-ATPase activity or RAAS inhibitors (RAASIs) [angiotensin-converting-enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), mineralocorticoid receptor antagonists or renin inhibitors] that decrease aldosterone excretion (Jain et al., 2012; Weir and Rolfe, 2010). The incidence of hyperkalemia with RAASIs in monotherapy is low (≤2%) in patients without predisposing factors, but increases with dual RAASIs (5%) and in patients with risk factors such as CKD, HF, and/or diabetes (5-10%) (Weir and Rolfe, 2010). Thus, hyperkalemia is a key limitation to fully titrate RAASIs in these patients who are most likely to benefit from treatment. Thus, we need new drugs to control hyperkalemia in these patients while maintaining the use of RAASIs.

 

History

Studies

In a Phase III multicenter clinical trial including 237 patients with hyperkalemia under RAAS inhibitor treatment, 76% of participants reached normal serum potassium levels within four weeks. After subsequent randomization of 107 responders into a group receiving continued patiromer treatment and a placebo group, re-occurrence of hyperkalemia was 15% versus 60%, respectively.[9]

Approval

The US FDA approved patiromer in October 2015.[7] The drug is not approved in Europe as of January 2016.

PATENT

WO 2010132662

PATENT

WO 2010022383

References

 

  • 1 Henneman, A; Guirguis, E; Grace, Y; Patel, D; Shah, B (2016). “Emerging therapies for the management of chronic hyperkalemia in the ambulatory care setting”. American Journal of Health-System Pharmacy 73 (2): 33–44. doi:10.2146/ajhp150457. PMID 26721532.
  • 2FDA Professional Drug Information for Veltassa.
  • 3Vanden Hoek TL, Morrison LJ, Shuster M, Donnino M, Sinz E, Lavonas EJ, Jeejeebhoy FM, Gabrielli A; Morrison; Shuster; Donnino; Sinz; Lavonas; Jeejeebhoy; Gabrielli (2010-11-02). “Part 12: cardiac arrest in special situations: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care”. Circulation 122 (18 Suppl 3): S829–61. doi:10.1161/CIRCULATIONAHA.110.971069. PMID 20956228.
  • 4Esteras, R.; Perez-Gomez, M. V.; Rodriguez-Osorio, L.; Ortiz, A.; Fernandez-Fernandez, B. (2015). “Combination use of medicines from two classes of renin-angiotensin system blocking agents: Risk of hyperkalemia, hypotension, and impaired renal function”. Therapeutic Advances in Drug Safety 6 (4): 166. doi:10.1177/2042098615589905. PMID 26301070.
  • 5Rastegar, A; Soleimani, M (2001). “Hypokalaemia and hyperkalaemia”. Postgraduate Medical Journal 77 (914): 759–64. doi:10.1136/pmj.77.914.759. PMC 1742191. PMID 11723313.
  • 6Tamargo, J; Caballero, R; Delpón, E (2014). “New drugs for the treatment of hyperkalemia in patients treated with renin-angiotensin-aldosterone system inhibitors — hype or hope?”. Discovery medicine 18 (100): 249–54. PMID 25425465.
  • 7″FDA approves new drug to treat hyperkalemia”. FDA. 21 October 2015.
  • 8RxList: Veltassa.
  • 9Weir, Matthew R.; Bakris, George L.; Bushinsky, David A.; Mayo, Martha R.; Garza, Dahlia; Stasiv, Yuri; Wittes, Janet; Christ-Schmidt, Heidi; Berman, Lance; Pitt, Bertram (2015). “Patiromer in Patients with Kidney Disease and Hyperkalemia Receiving RAAS Inhibitors”. New England Journal of Medicine 372 (3): 211. doi:10.1056/NEJMoa1410853. PMID 25415805.

 

 

 

Patiromer skeletal.svg
Systematic (IUPAC) name
2-Fluoropropenoic acid, cross-linked polymer with diethenylbenzene and 1,7-octadiene
Clinical data
Trade names Veltassa
AHFS/Drugs.com entry
Legal status
Routes of
administration
Oral suspension
Pharmacokinetic data
Bioavailability Not absorbed
Metabolism None
Onset of action 7 hrs
Duration of action 24 hrs
Excretion Feces
Identifiers
CAS Number 1260643-52-4
1208912-84-8 (calcium salt)
ATC code None
PubChem SID 135626866
DrugBank DB09263
UNII 1FQ2RY5YHH
KEGG D10148
ChEMBL CHEMBL2107875
Synonyms RLY5016
Chemical data
Formula [(C3H3FO2)182·(C10H10)8·(C8H14)10]n

[Ca91(C3H2FO2)182·(C10H10)8·(C8H14)10]n (calcium salt)

////


Filed under: FDA 2015 Tagged: FDA 2015, patiromer, RLY 5016

Canagliflozin , New patent, WO 2016016774, SUN PHARMACEUTICAL INDUSTRIES LIMITED

$
0
0

250px

 

WO2016016774, CRYSTALLINE FORMS OF CANAGLIFLOZIN

SUN PHARMACEUTICAL INDUSTRIES LIMITED [IN/IN]; Sun House, Plot No. 201 B/1 Western Express Highway Goregaon (E) Mumbai, Maharashtra 400 063 (IN)

SANTRA, Ramkinkar; (IN).
NAGDA, Devendra, Prakash; (IN).
THAIMATTAM, Ram; (IN).
ARYAN, Satish, Kumar; (IN).
SINGH, Tarun, Kumar; (IN).
PRASAD, Mohan; (IN).
GANGULY, Somenath; (IN).
WADHWA, Deepika; (IN)

The present invention relates to crystalline forms of canagliflozin, processes for their preparation, and their use for the treatment of type 2 diabetes mellitus. A crystalline Form R1of canagliflozin emihydrate. The crystalline Form R1 of canagliflozin hemihydrate of claim 1, characterized by an X-ray powder diffraction peaks having d-spacing values at about 3.1, 3.7, 4.6, and 8.9 A

The present invention relates to crystalline forms of canagliflozin, processes for their preparation, and their use for the treatment of type 2 diabetes mellitus.

Canagliflozin hemihydrate, chemically designated as (l<S)-l,5-anhydro-l-[3-[[5-(4-fluorophenyl)-2-thienyl]methyl]-4-methylphenyl]-D-glucitol hemihydrate, is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. Its chemical structure is represented by Formula I.

Formula I

U.S. Patent Nos. 7,943,582 and 8,513,202 disclose crystalline forms of canagliflozin hemihydrate.

PCT Publication No. WO 2009/035969 discloses a crystalline form of

canagliflozin, designated as I-S.

PCT Publication No. WO 2013/064909 discloses crystalline complexes of canagliflozin with L-proline, D-proline, and L-phenylalanine, and the processes for their preparation.

PCT Publication No. WO 2014/180872 discloses crystalline non-stoichiometric hydrates of canagliflozin (HxA and HxB), and the process for their preparation.

PCT Publication No. WO 2015/071761 discloses crystalline Forms B, C, and D of canagliflozin.

Chinese Publication Nos. CN 103980262, CN 103936726, CN 103936725, CN 103980261, CN 103641822, CN 104230907, CN 104447722, CN 104447721, and CN 104130246 disclose different crystalline polymorphs of canagliflozin.

In the pharmaceutical industry, there is a constant need to identify critical physicochemical parameters of a drug substance such as novel salts, polymorphic forms, and co-crystals, that affect the drug’s performance, solubility, and stability, and which may play a key role in determining the drug’s market acceptance and success.

The discovery of new forms of a drug substance may improve desirable processing properties of the drug, such as ease of handling, storage stability, and ease of purification. Accordingly, the present invention provides novel crystalline forms of canagliflozin having enhanced stability over known crystalline forms of canagliflozin.

 

EXAMPLES

Example 1 : Preparation of a crystalline Form Rl of canagliflozin hemihydrate

Amorphous canagliflozin (5 g) was suspended in an aqueous solution of sodium formate (80 mL of a solution prepared by dissolving 137.7 g of sodium formate in 180 mL of de-ionized water). The suspension was stirred at room temperature for 20 hours to obtain a reaction mixture. De-ionized water (100 mL) was added to the reaction mixture, and then the reaction mixture was stirred for 1.5 hours. De-ionized water (50 mL) was added to the reaction mixture, and then the reaction mixture was stirred for 30 minutes. The reaction mixture was filtered, then washed with de-ionized water (300 mL), and then dried under vacuum for 12 hours to obtain a solid. The solid was further dried under vacuum at 60°C for 6 hours.

Yield: 4.71 g

Example 2: Preparation of a crystalline Form R2 of canagliflozin monohydrate

Amorphous canagliflozin (5 g) was suspended in an aqueous solution of sodium formate (80 mL of a solution prepared by dissolving 137.7 g of sodium formate in 180 mL of de-ionized water). The suspension was stirred at room temperature for 20 hours to obtain a reaction mixture. De-ionized water (100 mL) was added to the reaction mixture, and then the reaction mixture was stirred for 1.5 hours. De-ionized water (50 mL) was added to the reaction mixture, and then the reaction mixture was stirred for 30 minutes. The reaction mixture was filtered, then washed with de-ionized water (300 mL), and then dried under vacuum for 12 hours at room temperature.

Yield: 4.71 g

Example 3 : Preparation of a crystalline Form R2 of canagliflozin monohydrate

Canagliflozin hemihydrate (0.15 g; Form Rl obtained as per Example 1) was suspended in de-ionized water (3 mL). The suspension was stirred at room temperature for 24 hours. The reaction mixture was filtered, then dried at room temperature under vacuum for 5 hours.

Yield: 0.143 g

Example 4: Preparation of a crystalline Form R3 of canagliflozin hydrate

Amorphous canagliflozin (100 g) was suspended in an aqueous solution of sodium formate (1224 g of sodium formate in 1600 mL of de-ionized water). The suspension was stirred at room temperature for 20 hours to obtain a reaction mixture. De-ionized water

(2000 mL) was added to the reaction mixture, and then the reaction mixture was stirred for one hour. De-ionized water (1000 mL) was added to the reaction mixture, and then the reaction mixture was stirred for another one hour. The reaction mixture was filtered, then washed with de-ionized water (6000 mL), and then dried under vacuum for 30 minutes to obtain a solid. The solid was then dried under vacuum at 30°C to 35°C until a water content of 8% to 16% was attained.

Yield: 100 g

Sun Pharma's Dilip Shanghvi has become the stuff of legends

From top left: Abhay Gandhi (CEO-India Business-Sun Pharma), Kal Sundaram (CEO-TARO). Middle row (L-R): Israel Makov (chairman, Sun Pharma), Dilip Shanghvi (Founder and MD, Sun Pharma) Uday Baldota (CFO, Sun Pharma). Bottom: Kirti Ganorkar (Senior VP, Business development, Sun Pharma)

 

./////////////Canagliflozin , New patent, WO 2016016774, SUN PHARMACEUTICAL INDUSTRIES LIMITED


Filed under: PATENT, PATENTS, PROCESS Tagged: CANAGLIFLOZIN, NEW PATENT, POLYMORPH, SUN PHARMACEUTICAL INDUSTRIES LIMITED, WO 2016016774

LUPIN, SOFOSBUVIR, NEW PATENT, WO 2016016865

$
0
0

Sofosbuvir structure.svg

 

(WO2016016865) A PROCESS FOR THE PREPARATION OF NUCLEOSIDE PHOSPHORAMIDATE

LUPIN LIMITED [IN/IN]; 159 CST Road, Kalina, Santacruz (East), State of Maharashtra, Mumbai 400 098 (IN)

ROY, Bhairab, Nath; (IN).
SINGH, Girij, Pal; (IN).
SHRIVASTAVA, Dhananjai; (IN).
MEHARE, Kishor, Gulabrao; (IN).
MALIK, Vineet; (IN).
DEOKAR, Sharad, Chandrabhan; (IN).
DANGE, Abhijeet, Avinash; (IN)

The present invention pertains to process for preparing nucleoside phosphoramidates and their intermediates. Phosphoramidates are inhibitors of RNA-dependent RNA viral replication and are useful as inhibitors of HCV NS5B polymerase, as inhibitors of HCV replication and for treatment of hepatitis C infection in mammals. One of the recently approved phosphoramidate by USFDA is Sofosbuvir [1190307-88-0]. Sofosbuvir is a component of the first all-oral, interferon-free regimen approved for treating chronic hepatitis C. The present invention provides novel intermediate, its process for preparation and use for the preparation of Sofosbuvir. The present invention also gives one pot process for preparation of Sofosbuvir.

Hepatitis C virus (HCV) infection is a major health problem that leads to chronic liver disease, such as cirrhosis and hepatocellular carcinoma, in a substantial number of infected individuals. There are limited treatment options for individuals infected with hepatitis C virus. The current approved therapeutic option is the use of immunotherapy with recombinant interferon- [alpha] alone or in combination with the nucleoside analog ribavirin.

US 7964580 (‘580) is directed towards novel nucleoside phosphoramidate prodrug for the treatment of hepatitis C virus infection.

US’580 patent claims Sofosbuvir and rocess for preparation of Sofosbuvir of Formula 1.

Formula 1

Process for preparation of Sofosbuvir as per US ‘580 patent involve reaction of compound of Formula 4″ with a nucleoside 5’

Compound 4″ nucleoside 5′

Wherein X’ is a leaving group, such as CI, Br, I, tosylate, mesylate, trifluoroacetate, trifluroslfonate, pentafluorophenoxide, p-nitro-phenoxide.

Objects of the invention

The object of the present invention is to provide a novel intermediate of Formula 2

Formula 2

wherein X’ is a leaving group selected from 1-hydroxybenzotriazole, 5-(Difluoromethoxy)-lH-benzimidazole-2-thiol, 2-Mercapto-5-methoxybenzimidazole, cyanuric acid, 2-oxazolidinone, 2-Hydroxy Pyridine. The above leaving group can be optionally substituted with n-alkyl, branched alkyl, substituted alkyl; cycloalkyl; halogen; nitro; or aryl, which includes, but not limited to, phenyl or naphthyl, where phenyl or naphthyl are further optionally substituted with at least one of Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, Ci-C6 alkoxy, F, CI, Br, I, nitro, cyano, Ci-C6 haloalkyl, -N(Rr)2, Ci-C6 acylamino, -NHS02Ci-C6 alkyl, -S02N(Rr)2, COR1″, and -S02Ci-C6 alkyl; (Rr is independently hydrogen or alkyl, which includes, but is not limited to, Ci-C2o alkyl, Ci-Cio alkyl, or Ci-C6 alkyl, R1” is -OR1 or -N(Rr)2).

Another object of the present invention is to provide a process to prepare the intermediate of Formula 2.

Another object of the present invention is use of the intermediate of Formula 2 in the preparation of Sofosbuvir of Formula 1.

Formula 1

Example 1:

Process for the preparation of S-oxazolidinone derivative of Formula 2

Step-1 Preparation of phosphorochloridate solution:

Dichloromethane (DCM 400ml) was charged in round bottom flask flushed with nitrogen. Phenyl phosphodichloridate (18.30ml) was added in one portion in the flask. The flask was cooled to -60°-70°C with a dry ice-acetone bath. Solution of L-alanine isopropyl ester hydrochloride (20.6gm)) in DCM (50ml) was added to the reaction flask. To this was added a solution of triethylamine (11.20ml) in MDC (100 ml) was added over a course of 60 minutes, while maintaining internal temperature below -70 °C throughout the addition. After completion of reaction, temperature of reaction mass was raised to room temperature.

100ml THF was charged in another round bottom flask flushed with nitrogen followed by the addition of S-4-phenyloxazolidnone (lOgm). Triethyl-amine (11.2ml) & LiCl (2.85gm) were added to the above flask. The reaction mass was stirred for 15-30 min at room temperature and was cooled to 0-5 °C. Phosphorochloridate solution from step-1 was added drop- wise to the reaction flask in 15-45 min maintaining reaction temperature at 0-5 °C. The reaction mass was stirred for 30-60min at 0°-5°C. The reaction progress was monitored on thin layer chromatography. After completion of the reaction, the reaction temperature was raised to room temperature. Agitation was resumed for an additional 30min. The reaction mass was filtered and concentrated under reduced pressure. To this was added diisopropyl ether (400ml) and aqueous saturated ammonium chloride solution and reaction mass was stirred for 10-15 minutes. Organic layer was separated and was washed with water (100ml) & dried over sodium sulfate and concentrated under vacuum. Cyclohexane (50ml) was charged to the obtained oily mass and reaction mass was stirred till solid precipitated out. Solid was filtered and washed with cyclohexane and dried under vacuum (8.80gm MP 56.5°-56.6°C). The obtained product was characterized by mass, NMR & IR. 1H NMR (DMSO-d6) δ 1.142 -1.18

(m, 9H), 3.85-3.92 (m, 1H), 4.72-4.89(m, 2H), 5.31-5.32(d, 1H), 6.25-6.3 (m, 1H), 6.95-7.31 (m, 10H); MS, m/e 433 (M+l) +

Example 2: Process for the preparation of 2-hydroxy pyridine derivatives of formula 2:

Anhydrous dichloromethane (DCM) 700ml was charged in round bottom flask flushed with nitrogen. The flask was cooled to -60° to -70°C in a dry ice acetone bath. Phenyl phosphodichloridate (76.04 gm) was added in one portion in the flask at -65°C. Solution of L-alanine isopropyl ester hydrochloride (60.56 gm) in DCM (50 ml) was added to the reaction mass. Solution of triethylamine (72.44gm) in DCM (50ml) was added to the reaction mass over a course of 60 minutes, while maintaining internal temperature below -70°C throughout the addition. The resulting white slurry was agitated for additional 60 minutes. Then the temperature of reaction mass was raised to room temperature. Reaction mass was stirred for 60 min & TLC was checked. Reaction mass was filtered and rinsed with anhydrous dichloromethane (2 XI 00 mL). The filtrate was concentrate under vacuum to 20 V and reaction mass was filtered, washed with DCM (15ml). The filtrate was transferred to RBF. The reaction mass was cooled to 0°-10°C. A solution of 2-hydroxy-3-nitro-5- (trifluoromethyl) pyridine (15.gm) in DCM (100ml) & triethyl amine (21.89gm) was added to the reaction mass. Temperature of reaction mass was raised to 20-30°C. Reaction mass was stirred overnight. Reaction was monitored using TLC. After completion, the reaction mass was filtered and washed with DCM (30ml). Filtrate was washed with water (150 ml x 2). Organic layer was concentrated under vacuum and degased. Diisopropyl ether (200ml) was charged to reaction mass and reaction mass was stirred for 15 minutes , filtered and washed with methyl ter-butyl ether (MTBE 30ml). Filtrate was concentrated under vacuum and dried. (8.68gm, MP-125.5°-131.5°C). Obtained compound was characterized by Mass, NMR & IR. 1H NMR (DMSO-d6) δ 1.07 -1.27 (m, 9H), 4.04-4. l l(m, 1H), 4.73-4.79(m, 1H), 6.76-7.43 (m, 5H), 9.00-9.02 (d, 2H); MS, m/e 478 (M+l) +; FTIR, 1203, 1409, 1580, 1732, 3217.

Other 2-hydroxy pyridine derivatives of Formula 2 were prepared by following the process disclosed in example 2-

2-Hydroxy-5-fluoropyridine derivative of Formula 2;-1H NMR (DMSO-d6) δ 1.09 -1.23 (m, 9H), 3.02-3.06 (m, lH), 3.85-4.01 (m,lH), 4.79-4.87(m, 1H), 6.4-6.52 (m,lH), 7.10-7.89 (m,6H); MS, m/e 383 (M+l) +,

2-Hydroxy-5-nitropyridine derivative of Formula 2:- 1H NMR (DMSO-d6) δ 1.06 -1.22 (m, 9H),4.0-4.02 (m,lH), 4.7-4.8(m,lH), 6.5-6.6 (m,lH),7.12-7.42 (m,6H),8.66-8.68 (d, lH),9.07-9.13(d,lH); MS, m/e 410 (M+l) +

2-Hydroxy-3, 5-dinitropyridine derivative of Formula 2:- 1H NMR (DMSO-d6) δ 1.11 -1.24 (m, 9H), 3.04-3.09(m,lH), 4.8-4.86(m,lH), 7.09-7.39 (m,5H),8.97-9.06 (d,2H)

Example 3: Process for the preparation of Sofosbuvir by coupling of isopropyl(((3-nitro-5-(trifluromethyl)pyridin-2-yl)oxy)phenoxy)phosphoryl-L-alaninate with 1-((2R,3R,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)-3-methyltetrahydrofuran-2-yl)pyrimidine-2,4(lH,3H)-dione :

To a solution of l-((2R,3R,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)-3-methyltetrahydrofuran-2-yl)pyrimidine-2,4(lH,3H)-dione (0.2gm) in THF (4 ml), tert- butylmagnesium chloride (0.80ml, 1.7 M solution in THF) was added dropwise at room temperature and reaction mass was stirred for 30 minutes. A solution of pyridine derivative from example 2 (0.36gm) in THF (4ml) was added dropwise to the reaction mass at room temperature. Completion of reaction was monitored using TLC. After completion of reaction, reaction mass was quenched by using saturated ammonium chloride solution (10ml). Reaction mass was extracted with ethyl acetate (50ml). Organic layer was separated, dried over magnesium sulfate and concentrated under vacuum. The resulting residue was purified by column chromatography on silica gel & obtained solid product was characterized. MS, m/e 530.2 (M+l) +.

/////////LUPIN, SOFOSBUVIR, NEW PATENT, WO 2016016865


Filed under: PATENT, PATENTS Tagged: lupin, NEW PATENT, Sofosbuvir, WO 2016016865

WOCKHARDT, WO 2016016766, ISAVUCONAZONIUM SULPHATE, NEW PATENT

$
0
0

 

(WO2016016766) A PROCESS FOR THE PREPARATION OF ISAVUCONAZONIUM OR ITS SALT THEREOF

WOCKHARDT LIMITED [IN/IN]; D-4, MIDC Area, Chikalthana, Aurangabad 431006 (IN)

KHUNT, Rupesh Chhaganbhai; (IN).
RAFEEQ, Mohammad; (IN).
MERWADE, Arvind Yekanathsa; (IN).
DEO, Keshav; (IN)

The present invention relates to a process for the preparation of stable Isavuconazonium or its salt thereof. In particular of the present invention relates to process for the preparing of isavuconazonium sulfate, Isavuconazonium iodide hydrochloride and Boc-protected isavuconazonium iodide has purity more than 90%. The process is directed to preparation of solid amorphous form of isavuconazonium sulfate, isavuconazonium iodide hydrochloride and Boc-protected isavuconazonium iodide. The present invention process of Isavuconazonium or its salt thereof is industrially feasible, simple and cost effective to manufacture of isavuconazonium sulfate with the higher purity and better yield.

Habil Khorakiwala, chairman of Indian generic drugmaker Wockhardt

Isavuconazonium sulfate is chemically known l-[[N-methyl-N-3-[(methylamino) acetoxymethyl]pyridin-2-yl] carbamoyloxy]ethyl-l-[(2R,3R)-2-(2,5-difluorophenyl)-2-hydroxy-3-[4-(4-cyanophenyl)thiazol-2-yl]butyl]-lH-[l,2,4]-triazo-4-ium Sulfate and is structurally represented by formula (I):

Formula I

Isavuconazonium sulfate (BAL8557) is indicated for the treatment of antifungal infection. Isavuconazonium sulfate is a prodrug of Isavuconazole (BAL4815), which is chemically known 4-{2-[(lR,2R)-(2,5-Difluorophenyl)-2-hydroxy-l-methyl-3-(lH-l ,2,4-triazol-l-yl)propyl]-l ,3-thiazol-4-yl}benzonitrile compound of Formula II

Formula II

US Ppatent No. 6,812,238 (referred to herein as ‘238); 7,189,858 (referred to herein as ‘858); 7,459,561 (referred to herein as ‘561) describe Isavuconazonium and its process for the preparation thereof.

The US Pat. ‘238 patent describes the process of preparation of Isavuconazonium chloride hydrochloride.

The US Pat. ‘238 described the process for the Isavuconazonium chloride hydrochloride, involves the condensation of Isavuconazole and [N-methyl-N-3((tert-butoxycarbonyl methylamino) acetoxymethyl) pyridine-2-yl]carbamic acid 1 -chloro-ethyl ester. The prior art reported process require almost 15-16 hours, whereas the present invention process requires only 8-10 hours. Inter alia prior art reported process requires too many step to prepare isavuconazonium sulfate, whereas the present invention process requires fewer steps.

Moreover, the US Pat. ‘238 describes the process for the preparation Isavuconazonium hydrochloride, which may be used as the key intermediate for the synthesis of isavuconazonium sulfate, compound of formula I. There are several drawbacks in the said process, which includes the use of anionic resin to prepare Isavuconazonium chloride hydrochloride, consequently it requires multiple time lyophilization, which makes the said prior art process industrially, not feasible.

The inventors of the present invention surprisingly found that Isavuconazonium or a pharmaceutically acceptable salt thereof in yield and purity could be prepared by using substantially pure intermediates in suitable solvent.

Thus, an object of the present invention is to provide simple, cost effective and industrially feasible processes for manufacture of isavuconazonium sulfate. Inventors of the present invention surprisingly found that isavuconazonium sulfate prepared from isavuconazonium iodide hydrochloride, provides enhanced yield as well as purity.

 

The process of the present invention is depicted in the following scheme:

Formula I

Formula-IA

The present invention is further illustrated by the following example, which does not limit the scope of the invention. Certain modifications and equivalents will be apparent to those skilled in the art and are intended to be included within the scope of the present application.

Examples

Example-1: Synthesis of l-[[N-methyl-N-3-[(t-butoxycarbonylmethylamino) acetoxymethyl]pyridin-2-yl]carbamoyloxy]ethyl-l-[(2R,3R)-2-(2,5-difluorophenyl)-2-hydroxy-3 – [4-(4-cyanophenyl)thiazol-2-yl]butyl] – 1 H-[ 1 ,2,4] -triazo-4-ium iodide

Isavuconazole (20 g) and [N-methyl-N-3((tert-butoxycarbonylmethylamino)acetoxy methyl)pyridine-2-yl]carbamic acid 1 -chloro-ethyl ester (24.7 g) were dissolved in acetonitrile (200ml). The reaction mixture was stirred to add potassium iodide (9.9 g). The reaction mixture was stirred at 47-50°C for 10-13 hour. The reaction mixture was cooled to room temperature. The reaction mass was filtered through celite bed and washed acetonitrile. Residue was concentrated under reduced pressure to give the crude solid product (47.7 g). The crude product was purified by column chromatography to get its pure iodide form (36.5 g).

Yield: 84.5 %

HPLC Purity: 87%

Mass: m/z 817.4 (M- 1)+

Example-2: Synthesis of l-[[N-methyl-N-3-[(methylamino)acetoxymethyl]pyridin-2-yl] carbamoyloxy]ethyl-l-[(2R,3R)-2-(2,5-difluorophenyl)-2-hydroxy-3-[4-(4-cyanophenyl) thiazol-2-yl]butyl]-lH-[l ,2,4]-triazo-4-ium iodide hydrochloride

l-[[N-methyl-N-3-[(t-butoxycarbonylmethylamino)acetoxymethyl]pyridin-2-yl] carbamoyloxy]ethyl-l-[(2R,3R)-2-(2,5-difluorophenyl)-2-hydroxy-3-[4-(4-cyanophenyl) thiazol-2-yl]butyl]-lH-[l ,2,4]-triazo-4-ium iodide (36.5 g) was dissolved in ethyl acetate (600 ml). The reaction mixture was cooled to -5 to 0 °C. The ethyl acetate hydrochloride (150 ml) solution was added to reaction mixture. The reaction mixture was stirred for 4-5 hours at room temperature. The reaction mixture was filtered and obtained solid residue washed with ethyl acetate. The solid dried under vacuum at room temperature for 20-24 hrs to give 32.0 gm solid.

Yield: 93 %

HPLC Purity: 86%

Mass: m/z 717.3 (M-HC1- 1)

Example-3: Preparation of Strong anion exchange resin (Sulfate).

Indion GS-300 was treated with aqueous sulfate anion solution and then washed with DM water. It is directly used for sulfate salt.

Example-4: Synthesis of l-[[N-methyl-N-3-[(methylamino)acetoxymethyl]pyridin-2-yl] carbamoyloxy]ethyl-l-[(2R,3R)-2-(2,5-difluorophenyl)-2-hydroxy-3-[4-(4-cyanophenyl) thiazol-2-yl]butyl]-lH-[l ,2,4]-triazo-4-ium Sulfate

Dissolved 10.0 g l-[[N-methyl-N-3-[(methylamino)acetoxymethyl]pyridin-2-yl] carbamoyloxy]ethyl-l-[(2R,3R)-2-(2,5-difluorophenyl)-2-hydroxy-3-[4-(4-cyanophenyl) thiazol-2-yl]butyl]-lH-[l ,2,4]-triazo-4-ium iodide hydrochloride in 200 ml deminerahzed water and 30 ml methanol. The solution was cooled to about 0 to 5°C. The strong anion exchange resin (sulfate) was added to the cooled solution. The reaction mixture was stirred to about 60-80 minutes. The reaction was filtered and washed with 50ml of demineralized water and methylene chloride. The aqueous layer was lyophilized to obtain

(8.0 g) white solid.

Yield: 93 %

HPLC Purity: > 90%

Mass: m/z 717.4 (M- HS04) +

 

 

////////WOCKHARDT, WO 2016016766, ISAVUCONAZONIUM SULPHATE, NEW PATENT


Filed under: PATENT, PATENTS Tagged: ISAVUCONAZONIUM SULPHATE, NEW PATENT, WO 2016016766, Wockhardt

WO 2016015596, Omarigliptin, Sunshine Lake Pharma Co Ltd, New patent

$
0
0

(WO2016015596) PROCESS FOR PREPARING 2, 3-DISUBSTITUTED-5-OXOPYRAN COMPOUND

SUNSHINE LAKE PHARMA CO., LTD. [CN/CN]; Northern Industrial Area, Songshan Lake Dongguan, Guangdong 523000 (CN)

SUN, Guodong; (CN).
LIU, Yongjun; (CN).
WEI, Mingjie; (CN).
LAI, Cailang; (CN).
LI, Dasheng; (CN).
ZHANG, Shouhua; (CN).
WANG, Zhongqing; (CN)

A 2, 3-disubstituted 5-oxopyran compound of formula (04) :
in which Ar is phenyl optionally substituted with R4, R4 is F, Cl, C1-C6 alkyl unsubstituted or substituted with fluorine, or C1-C6 alkoxy unsubstituted or substituted with fluorine; each of R1 and R2 is independently hydrogen, or an amino-protecting group; is useful in the synthesis of Omarigliptin or other compounds, is an important intermediate.
US Patent No. 7902376 and PCT Publication WO2007097931 disclose methods to prepare compounds of formula (04) , but both of the methods disclosed are complex to operate and need a special catalyst. So it is necess ary to explore an easy process.

 

Example 1:
tert-butyl ( (2R, 3S) -2- (2, 5-difluorophenyl) -5- (iodomethylene) tetrahydrofuran-3-yl) carbamate

To a mixture of methanol (42 mL) and tert-butyl ( (1R, 2S) -1- (2, 5-difluorophenyl) -1-hydroxypent-4-yn -2-yl) carbamate (7.0 g) cooled to-5℃ was added a solution of KOH (3.2 g) in methanol (28 mL) dropwise. After dropwise addition, the resulting mixture was stirred for 30 minutes, then iodine (5.7 g) was added to the mixture. The reaction mixture was stirred at 0 ℃ for 10 minutes, followed by 25 ℃ for 6 hours, and then quenched with water (140 mL) . Then the mixture was stirred at 25 ℃ for 2 hours. The precipitate was collected by filtration and washed sequentially with methanol/water (40 mL, v: v=1: 1) . The resulting solid was dried at 45 ℃ in vacuo to give the title compound as awhite solid (8.8 g, purity: 95.0%)

The compound was characterized by the following spectroscopic data: LC-MS (ESI, pos. ion) m/z : 460.2, [M+Na] +;
1H NMR (600 MHz, CDCl3) δ (ppm) : 7.09-6.90 (m, 3H) , 5.46 (s, 1H) , 4.92 (d, 1H) , 4.86 (d, 1H) , 4.36 (s, 1H) , 2.95 (ddd, 1H) , 2.62 (dd, 1H) , 1.43 (s, 9H) .
Example 2:
tert-butyl ( (2R, 3S) -5- (bromomethylene) -2- (2, 5-difluorophenyl) tetrahydrofuran- 3-yl) carbamate
To a mixture of methanol (150 mL) and sodium methoxide (13.0 g) cooled to -10 ℃ was added a solution of tert-butyl ( (1R, 2S) -1- (2, 5-difluorophenyl) -1-hydroxypent-4-yn-2-yl) carbamate (31.1 g) in methanol (200 mL) dropwise. After dropwise addition, N-bromosuccinimide (21.5 g) was added to the resulting mixture. The mixture was stirred at 0 ℃ for 10 minutes, followed by 25 ℃ for 6 hours, and then quenched with water (350 mL) and stirred for 30 minutes. The mixture was concentrated in vacuo until the precipitate appeared. After stirring at 25 ℃ for 30 minutes, the precipitate was collected by filtration and washed sequentially with methanol (80 mL) and water (80 mL) . The resulting solid was dried at 45 ℃ in vacuo to give the title compound as a white solid (35.4 g, purity: 92.8%) .
The compound was characterized by the following spectroscopic data: LC-MS (ESI, pos. ion) m/z: 414.0, [M+Na] +
1H NMR (600 MHz, CDCl3) δ (ppm) : 7.11 -6.87 (m, 3H) , 5.53-5.30 (m, 1H) , 5.13-5.06 (m, 1H) , 4.33 (s, 1H) , 2.95-2.86 (m, 1H) , 2.62-2.56 (m, 1H) , 1.43 (s, 9H) .
Example 3:
tert-butyl ( (2R, 3S) -5- (bromomethylene) -2- (2, 5-difluorophenyl) tetrahydrofuran-3-yl) carbamate

 

To a mixture of water (42 mL) , methanol (100 mL) and KOH (15.0 g) cooled to -10 ℃ was added a solution of tert-butyl ( (1R, 2S) -1- (2, 5-difluorophenyl) -1-hydroxypent-4-yn-2-yl) carbamate (41.6 g) in methanol (550 mL) dropwise. After dropwise addition, dibromohydantoin (23.1 g) was added to the resulting mixture. The reaction mixture was stirred at 0 ℃ for 30 minutes, followed with a temperature from 20 ℃ to 25 ℃ for 8 hours, and then quenched with water (650 mL) and stirred for 1.5 hours. The precipitate was collected by filtration and washed sequentially with methanol/water (400 mL, v: v=1: 1) . The resulting solid was dried at 50 ℃ in vacuo to give the title compound as a white solid (46.5 g) .
The compound was characterized by the following spectroscopic data: LC-MS (ESI, pos. ion) m/z: 414.0, [M+Na] +.
Example 4:
tert-butyl ( (1R, 2S) -1- (2, 5-difluorophenyl) -1-hydroxy-5-iodo-4-oxopentan-2-yl) carbamate

 

A solution of sodium hydrogen sulfate monohydrate (2.2 g) and tert-butyl ( (2R, 3S) -2- (2, 5-difluorophenyl) -5- (iodomethylene) tetrahydrofuran-3-yl) carbamate (7.2 g) in THF/water (35 mL/7 mL) was stirred at a temperature from 28 ℃ to 33 ℃ for 12 hours. Then the organic phase of the reaction mixture was separated and concentrated in vacuo at 40 ℃ to remove THF. Isopropyl acetate (35 mL) and water (28 mL) was added to the residue and the resulting mixture was stirred for 10 minutes. The seperated organic phase was concentrated in vacuo to give the title compound as brown oil (8.6 g) , which could be used for the next step without purification.
The compound was characterized by the following spectroscopic data: LC-MS (ESI, pos. ion) m/z: 477.8, [M+Na] +, 381.8, [M-BuO] + .
Example 5:
tert-butyl ( (1R, 2S) -5-bromo-1- (2, 5-difluorophenyl) -1-hydroxy-4-oxopentan-2-yl) carbamate
A solution of sodium hydrogen sulfate monohydrate (6.9 g) and tert-butyl ( (2R, 3S) -5- (bromomethylene) -2- (2, 5-difluorophenyl) tetrahydrofuran-3-yl) carbamate (39.0 g) in THF/water (200 mL/40 mL) was stirred at 60 ℃ for 10 hours to complete the reaction. Then the organic phase of the reaction mixture was separated and concentrated in vacuo to remove THF. The residue was diluted with isopropyl acetate (200 mL) and water (120 mL) , and stirred to dissolve. The organic phase was seperated and concentrated in vacuo to give the title compound as brown oil (43.5 g) , which was used for the next step without purification.
The compound was characterized by the following spectroscopic data: LC-MS (ESI, pos. ion) m/z: 336.1, [M-BuO] +.
Example 6:
tert-butyl ( (2R, 3S) -2- (2, 5-difluorophenyl) -5-oxotetrahydro-2H-pyran-3-yl) carbamate
To the brown oil (8.6 g) obtained from Example 4 were added THF (40 mL) and K2CO3 (2.6 g) . The reaction was stirred at 30 ℃ for 16 hours. Then the mixture was concentrated in vacuo to remove THF and the resulting residue was diluted with a mixture of ethyl acetate (40 mL) and water (20 mL) . The separated organic phase was concentrated in vacuo and the resulting residue was diluted with ethyl acetate (2.5 mL) , heated to 40 ℃ and stirred to dissolve. Then the mixture was cooled to 20 ℃ and n-heptane (7.5 mL) was added. After sitrring for 4 hours at 20 ℃, the precipitate was collected by filtration to give the title compound as a white solid (4.0 g) .
The compound was characterized by the following spectroscopic data: LC-MS (ESI, pos. ion) m/z: 350.0, [M+Na] +, 368.0, [M+K] +
1H NMR (600 MHz, CDCl3) δ (ppm) : 7.24 (m, 1H) , 7.04 (m, 2H) , 4.85 (s, 1H) , 4.68 (s, 1H) , 4.31 (dd, 1H) , 4.16-4.11 (m, 1H) , 4.11-4.04 (m, 1H) , 3.10-3.02 (m, 1H) , 2.75 (s, 1H) , 1.64 (s, 1H) , 1.37-1.25 (s, 9H) .
Example 7:
tert-butyl ( (2R, 3S) -2- (2, 5-difluorophenyl) -5-oxotetrahydro-2H-pyran-3-yl) carbamate
To the brown oil (43.5 g) obtained from Example 5 were added THF (500 mL) and K2CO3 (15.2 g) . The reaction was stirred at 35 ℃ for 16 hours. Then the organic phase was separated and concentrated in vacuo at 40 ℃ to remove THF and the resulting residue was diluted with a mixture of ethyl acetate (500 mL) and water (100 mL) . Then the separated organic phase was concentrated in vacuo and the resulting residue was diluted with ethyl acetate (13 mL) , heated to 40 ℃ and stirred to dissolve. Then the mixture was cooled to 20 ℃ and n-heptane (39 mL) was added. After sitrring for 4 hours at 20 ℃, the precipitate was collected by filtration to give the title compound as a white solid (23.9 g) .
The compound was characterized by the following spectroscopic data: LC-MS (ESI, pos. ion) m/z: 350.0.

 

//////////WO 2016015596, Omarigliptin,  Sunshine Lake Pharma Co Ltd, NEW PATENT


Filed under: PATENT, PATENTS Tagged: NEW PATENT, OMARIGLIPTIN, Sunshine Lake Pharma Co Ltd, WO 2016015596

WO 2016018024, DAPAGLIFLOZIN, HANMI FINE CHEMICAL CO., LTD, NEW PATENT

$
0
0

 

Dapagliflozin structure.svg

 

(S) – propylene glycol and water, 1: 1 crystalline complex

 

PATENT

WO2016018024, CRYSTALLINE COMPOSITE COMPRISING DAPAGLIFLOZIN AND METHOD FOR PREPARING SAME

HANMI FINE CHEMICAL CO., LTD. [KR/KR]; 59, Gyeongje-ro, Siheung-si, Gyeonggi-do 429-848 (KR)

KIM, Ki Lim; (KR).
PARK, Chulhyun; (KR).
LEE, Jaeheon; (KR).
CHANG, Young-kil; (KR)

The present invention relates to a crystalline composite comprising dapagliflozin and a method for preparing the same. More specifically, the present invention provides a novel crystalline composite comprising dapagliflozin, which is an SGLT2 inhibitor, and a preparing method capable of economically preparing the novel crystalline composite at high purity.

long period of time, there is a problem with secretion of insulin in diabetes is a problem with the function of insulin, or the two compounds problems of the disease that is to say maintaining a high blood sugar. Insulin helps the one that sends glucose into cells in order to replace the nutrients such as glucose that is in a hormone secreted by the beta cells of the pancreas blood into energy. However, if there is insufficient action of insulin, glucose accumulates in the blood does not enter the cell and cause the muscles and blood sugar, sugar in the urine is out. When these two long-standing high blood sugar will cause a number of microvascular complications. Not cut due to such complications, such as may result in blindness.

 

Worldwide diabetes has become one of the major causes of death in adults, an increasing number of diabetes patients may sharply with the increase of obesity population.

 

In diabetic patients SGLT2 (Sodium-Glucose linked transporter 2) selective inhibition of significant gastrointestinal side effects without increasing the emissions of glucose in the urine, thereby improving insulin sensitivity and delay the onset of diabetes complications by the normalization of plasma glucose can be there.

 

Bristol-to US Patent No. 6,515,117 of Myers Squibb Company of formula It discloses a binary) to dapa glyphs.

 

[Formula 1]

 

While preparing the material of Formula 1 in the above patent, the desired compound was obtained as an oil form, here was added to the chloroform under vacuum to reprocess getting the desired compound as a solid in a viscous that contains ethyl acetate. Compounds of the formula I obtained by the above method of production must be carried out the purification using a column, etc. because it can not remove the impurities of the desired compound, which is not suitable as an industrial method.
In addition, Bristol-to the US Patent 7,919,598 of Myers Squibb Company No. discloses a compound of formula 2.

 

[Formula 2]
Compounds of Formula 2 are the compounds of formula 1, (S) – propylene glycol and water, 1: 1 crystalline complex: 1. The compound of Formula 2 can be conveniently used in medicine to use by crystallizing the compound of formula 1 with low crystallinity and are also useful in the purification of the compounds of formula (I).

 

However, the compound of formula 2 is (S), the price is very expensive – and the use of propylene glycol, which results in increasing the production cost. This is very disadvantageous In the eyes of people with diabetes need to take the long-term.

 

In addition, European Patent No. 2597090 of Sandoz is disclosed of the formula monohydrate. Of the formula monohydrate is then stirred as a compound of the sugar alcohol and the formula of the glycol, glycerol, arabitol, xylitol, etc. in water obtained the seed (seed), by using this discloses a method for preparing the monohydrate in water, and have.

 

However, the European patent is described that the hydrate should be obtained stirred for three days at low temperature in order to obtain after obtaining the actual seed crystals, although not yield is mentioned is expected to be very low. For this reason, because of the situation in the research and development of novel crystalline complexes THE dapa glyphs are continually required.

 

Best Mode for Carrying out the Invention

Hereinafter, the present invention will be described in detail.
Crystalline complex according to the invention is for lowering the production cost by obtaining a product of high purity without the need for further purification, it has the structure of formula (3).
[Formula 3]

The crystalline complex is in the X- ray diffraction pattern of 9.7, 17.3, 20.0, 20.4, and may comprise a characteristic peak at a 2θ of 21.4 ± 0.2 °, preferably 9.7, 11.1, 13.7, 17.3, 18.7, 20.0, 20.4, 21.4, 27.5, 33.9, 36.2, 40.4 and 43.9 ± 0.2 °, and can include a peak at 2θ of teukjeongjik, it may be most preferably having a powder X-ray diffraction pattern is shown in Fig.
It was confirmed that the heat-absorption peak appears at about 163 ℃, to refer to the thermal analysis by; (DSC differential scanning calorimetr) The crystalline complex is differential scanning calorimetry of FIG.
The crystalline complex is the measured moisture content in accordance with the Karl-Fischer method can be 2-5%, preferably be 2.1 ~ 3.5%.
In addition, the present invention includes a mixture of 1), mannitol and the solvent to prepare a mannitol solution; 2) preparing an alcohol solution by mixing the alcohol with the glyph dapa gin; 3) mixing the mannitol solution and the alcohol solution, heating to 50 ~ 100 ℃; And 4) cooling the heated solution to 0 ~ 15 ℃ provides a method for preparing the crystalline complex comprising the steps of obtaining a composite having a crystalline structure of Formula 3.
It describes a method for producing crystalline complex according to the present invention;
Step 1: Mannitol solution prepared
Step 1 of the manufacturing method according to the present invention is a step in which a mixture of mannitol and a solvent to prepare a mannitol solution.
The mannitol is suitable for the manufacture of a therapeutic agent for diabetes to be taking a long period of time as a material that is widely used like medicine, food, with high stability and low price. Furthermore, mannitol is used in reducing the edema by osmotic action, and thus the material to promote diuresis. This is mannitol is determined to be helpful to the action Qin dapa glyphs used as SGLT-2 inhibitors.
The mannitol is typically so long that can be purchased and / or synthesis is not particularly limited, preferably the D- mannitol, L- and D · mannitol may include one or more of the group consisting of L- mannitol , and it can be most preferably D- Magny-tolyl.
The solvent as long as it can dissolve the mannitol is not particularly limited, and may preferably be water.
The Mani mixing ratio of the toll and the solvent. If the amount that can be dissolve the mannitol, the solvent is not particularly restricted, the preferably mannitol and solvent 1: 8-20 weight ratio or 1: 1 may be mixed with 10 to 15 weight .
Step 2: Preparation of an alcohol solution
Step 2 of the manufacturing method according to the invention by mixing the alcohol with Jean dapa glyph is a step for preparing the alcoholic solution.
In the glyph binary dapa may be prepared by the method described in commercially available, and arc carried US Patent 6,515,117 example G.
The alcohol is long as it can dissolve the THE dapa glyph is not particularly limited, preferably the C 1 ~ C 4 alcohol may comprise at least one of (a lower alcohol), and most preferably ethanol .
The dapa If the mixing ratio of the pictures and alcohol as a glyph is content that can be dissolved in THE dapa glyph to alcohol is not particularly limited, preferably the gin alcohol dapa glyphs 1: 3-8 or 1: a volume ratio of 6-7 It may be mixed.
Step 3: heat-up phase
Step 3 of the manufacturing method according to the present invention is a step in which the mani mixing and heating the solution and the alcohol solution toll.
The step is a process for producing a crystalline complex containing THE dapa glyphs included in mannitol as an alcohol solution that is included in the mannitol solution, the mixing ratio of the mixed solution and the alcohol solution is mannitol and the pro pageul a binary 1: 0.5-2 or 1: it is preferable to mix in 1.0 to 1.5 molar ratio.
The heating may preferably be carried out at 50 ~ 100 70 ~ 90 ℃ or ℃.
Step 4: obtained crystalline complexes
Step 4 according to the present invention is by cooling the heated solution to obtain a crystalline complex having the structure of Formula 3.
The cooling is preferably at 0 ~ 15 ℃ ℃ or 3 ℃ ~ 12 ℃.
Further, according to the embodiment of the present invention, in order to improve the speed of determining the crystalline complex to be obtained, the cooling after seeding may further include a (seeding) and further comprising cooling. The further cooling can preferably be carried out at 0 ~ 15 ℃ ℃ or 3 ℃ ~ 12 ℃ for 5 to 24 hours, or 7 ~ 15 hours.
The production method of the present invention as described above, dapa glyphs to binary and mannitol for the crystalline complex has the advantage that can be produced in more than 99.0% pure without further purification, including, of high purity at a low manufacturing cost crystalline It has the advantage of producing the composite.

Mode for the Invention

Hereinafter the present invention will be described in more detail by examples. However, these examples are for the purpose of illustrating the invention by way of example, but the scope of the present invention is limited to these Examples.
Example 1. Preparation of the crystalline complex
The D- mannitol 0.98g (5.4mmol) was dissolved in purified water to prepare a mannitol 12㎖. On the other hand, amorphous THE dapa glyphs (purity:> 94%, U.S. Patent No. 6,515,117 prepared by the method described in of Example G) was dissolved in 2g (4.9mmol) in ethanol to give the alcohol 13 ㎖ solution. After the mannitol solution at room temperature to give the mixed solution is added to the alcohol solution. The mixed solution was heated under reflux for 3 hours so that the 80 ℃. After the cooling the solution obtained through the reflux slowly to 10 ℃ for 2 hours and then added to camp in the dapa glyph to 4 wt% solution total weight compared to the seeding (seeding) for 12 hours at 200 rpm at 4 ℃ cooling and stirring was added. After Buchner funnel (Buchner funnel) and filtered with a filter paper 55 ㎜ and dried for 8 hours under nitrogen and 20 ℃ to obtain a crystalline complex 1.3g (45%).
Experimental Example 1. Structural analysis
Nuclear magnetic resonance spectrum (NMR) (400MHz FT-NMR Spectrometer (Varian, 400-MR)) of a crystalline complex obtained in Example 1 by using 1 yielded a H NMR spectrum, and the results, and in Fig. 1 It exhibited.
1 H NMR (400㎒, DMSO-d 6 ): δ 7.37-7.35 (d, 1H), 7.32-7.31 (d, 1H), 7.24-7.21 (dd, 1H), 7.10-7.08 (d, 2H), 6.83-6.81 (d, 2H), 4.97-4.95 (dd, 2H), 4.84-4.83 (d, 1H), 4.48-4.44 (t, 1H), 4.42-4.40 (d, 1H), 4.34-4.31 (t , 1H), 4.14-4.12 (d, 1H), 4.02-3.92 (m, 5H), 3.71-3.67 (m, 1H), 3.67-3.58 (m, 1H), 3.56-3.52 (t, 1H), 3.46 -3.35 (m, 3H), 3.28-3.07 (m, 4H), 1.31-1.27 (t, 3H)
The first through the results of 1 H NMR, and also, to the structure of a crystalline complex obtained in Example 1, it was confirmed that the formula (4).
[Formula 4]

Experimental Example 2. OK crystalline crystalline complexes
By performing an X-ray diffraction analysis and differential scanning calorimetry, it was confirmed that crystal form of the crystalline complex obtained in Example 1. More specifically, Diffraction Extensible Resource Descriptor (Brucker, USA) for use with X-ray diffraction (XRD) to perform, and differential scanning calorimetry (Differential scanning calorimeter; METTLER TOLEDO, Swiss) for use by differential scanning calorimetry (DSC) It was performed. Results of X-ray diffraction analysis results in Figure 1, the differential scanning calorimetry are shown in Fig.
Results of X-ray diffraction analysis, the crystalline complex according to an embodiment of the present invention exhibited a characteristic peak at 9.7, 11.1, 13.7, 17.3, 18.7, 20.0, 20.4, 21.4, 27.5, 33.9, 36.2, 40.4 and 2θ of 43.9 ° .
Experimental Example 3. HPLC analysis
To a crystalline complex obtained in Example 1 under the conditions of Table 1 and Table 2 it was carried out to HPLC (high performance liquid chromatography) analysis.

TABLE 1

column Ascentis Express RP-Amide 4.6mm × 150mm (diameter × height), 2.7㎛ (Aldrich)
The mobile phase A: Formic acid 1mL/1000mL in H 2 OB: Formic acid 1mL/1000mL in Acetonitrile (ACN)
Test Solution Acetonitrile Test specimen 5mg / 10mL in 50% (ACN)
Column temperature 25 ℃
Wavelength detector UV, 220nm
Dose 3 ㎕
Flow rate 0.7 mL / min
Operating hours 40 min

Table 2

Gradient systems
Time (min) Mobile phase A (%) Mobile phase B (%)
0 75 25
0-25 35 65
25-26 30 70
26-29 30 70
29-35 75 25
35-40 75 25
As described above, the results of the HPLC analysis, the crystalline complex of Example 1, it was confirmed that the purity of 99% or more. In addition, the crystalline complex of Example 1, it was confirmed that the water content measured by Karl-Fischer method of 2.9%.

Claims

To a crystalline complex comprising a dapa THE glyph having the structure of formula 3: [Formula 3]

According to claim 1, wherein said crystalline complex is in the X- ray diffraction pattern of 9.7, 11.1, 13.7, 17.3, 18.7, 20.0, 20.4, 21.4, 27.5, 33.9, 36.2, 40.4, and the characteristic peaks at 2θ of 43.9 ± 0.2 ° containing crystalline complexes.

According to claim 1, wherein said crystalline complex is the measured moisture content in accordance with the Karl-Fischer method which is characterized in that 2 to 5%, the crystalline complex.
1) preparing a mannitol solution by mixing mannitol (mannitol) and the solvent 2) a mixture of binary (dapagliflozin) and alcohol in dapa glyph for preparing an alcohol solution; 3) wherein the mannitol solution and the alcohol mixing the solution and heated to 50 ~ 100 ℃; And 4) the production method to cool the heated solution to 0 ~ 15 ℃ comprising the step of obtaining a polycrystalline composite having a structure of formula (3), a crystalline complex: [Formula 3]
[Claim 5]
According to claim 4, wherein the solvent is the production of water, the crystalline complex.
According to claim 4, wherein the alcohol is a C 1 ~ C 4, a method of producing a crystalline complex comprising at least one kind of alcohol.
According to claim 6, wherein the alcohol is ethanol, the method of the crystalline complex prepared.

According to claim 4, wherein the mixing ratio by the spirit and mannitol dapa glyph is 1: 0.5 to 2 mole ratio, the method of producing a crystalline complex.

 

FIGURES

Figure 1 illustrates a X- ray diffraction spectrum of the crystalline complex in accordance with an embodiment of the present invention.
2 is a result of the differential scanning calorimetry of the crystalline complexes (DSC) in accordance with an embodiment of the present invention.
3 is of the crystalline complex in accordance with an embodiment of the present invention 1 shows the H-NMR measurement results.
[Figure 1]

[Figure 2]

[Figure 3]

 

CEO, YOUNG KIL CHANG

/////////WO 2016018024, DAPAGLIFLOZIN, HANMI FINE CHEMICAL CO., LTD, New patent


Filed under: PATENT, PATENTS Tagged: DAPAGLIFLOZIN, HANMI FINE CHEMICAL CO., Ltd, NEW PATENT, WO 2016018024

Talazoparib

$
0
0

Talazoparib.svg

Talazoparib, BMN-673, MDV-3800

(2S,3S)-methyl-7-fluoro-2-(4-fluorophenyl)-3-(1-methyl-1H-1,2,4-triazol-5-yl)-4-oxo-1,2,3,4-tetrahydroquinoline-5-carboxylate

(8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one

CAS 1207456-01-6
Chemical Formula: C19H14F2N6O
Exact Mass: 380.11972

BMN673, BMN673, BMN-673, LT673, LT 673, LT-673,  Talazoparib

BioMarin Pharmaceutical Inc

phase 3

Poly ADP ribose polymerase 2 inhibitor; Poly ADP ribose polymerase 1 inhibitor

cancer

(85,9R)-5-fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one toluenesulfonate salt

CAS 1373431-65-2(Talazoparib Tosylate)

Talazoparib (BMN-673) is an investigational drug that acts as a PARP inhibitor. It is in clinical trials for various cancers.

Talazoparib.png

Medivation, under license from BioMarin Pharmaceuticals, following its acquisition of LEAD Therapeutics, is developing a PARP-1/2 inhibitor, talazoparib, for treating cancer, particularly BRCA-mutated breast cancer. In February 2016, talazoparib was reported to be in phase 3 clinical development

Talazoparib, also known as BMN-673, is an orally bioavailable inhibitor of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) with potential antineoplastic activity (PARP1 IC50 = 0.57 nmol/L). BMN-673 selectively binds to PARP and prevents PARP-mediated DNA repair of single strand DNA breaks via the base-excision repair pathway. This enhances the accumulation of DNA strand breaks, promotes genomic instability and eventually leads to apoptosis. PARP catalyzes post-translational ADP-ribosylation of nuclear proteins that signal and recruit other proteins to repair damaged DNA and is activated by single-strand DNA breaks. BMN-673 has been proven to be highly active in mouse models of human cancer and also appears to be more selectively cytotoxic with a longer half-life and better bioavailability as compared to other compounds in development. Check for active clinical trials or closed clinical trials using this agent.

Talazoparib is C19H14F2N6O.

Talazoparib tosylate is C26H22F2N6O4S.[1]

Approvals and indications

None yet.

Mechanism of action

Main article: PARP inhibitor

Clinical trials

After trials for advanced hematological malignancies and for advanced or recurrent solid tumors.[2] it is now in phase 3 for metastatic germline BRCA mutated breast cancer.[3] Trial estimated to complete in June 2016.[4]

As of January 2016 it in 14 active clinical trials.[5]

WO2010017055,  WO2015069851, WO 2012054698, WO 2011130661, WO 2013028495, US 2014323725, WO 2011097602

PATENT

WO-2016019125

WO2016019125

The compound (85,9R)-5-fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one toluenesulfonate salt (Compound (A))

Compound (A)

is an inhibitor of poly(ADP-ribose)polymerase (PARP). Methods of making it are described in WO2010017055, WO2011097602, and WO2012054698. However, the disclosed synthetic routes require chiral chromatography of one of the synthetic intermediates in the route to make Compound (A), methyl 7-fluoro-2-(4-fluorophenyl)-3-(l -methyl- lH-1, 2,4-triazol-5-yl)-4-oxo- 1 ,2,3,4-tetrahydroquinoline-5-carboxylate (Intermediate (A)),

Intermediate (A)

to yield the chirally pure (2S,35)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH- 1,2,4-triazol-5-yl)-4-oxo-l,2,3,4-tetrahydroquinoline-5-carboxylate (Compound (1))

Compound (1).

Using conventional chiral chromatography is often solvent and time intensive.

Use of more efficient chromatography methods, such as simulated moving bed (SMB) chromatography still requires the use of expensive chiral chromatography resins, and is not practical on a large scale to purify pharmaceutical compounds. Also, maintaining

Compound (1) in solution for an extended time period during chromatography can lead to epimerization at the 9-position and cleavage of the methyl ester group in Compound (1). Replacing the chromatography step with crystallization step(s) to purify Compound (1) is desirable and overcomes these issues. Therefore, it is desirable to find an alternative to the use of chiral chromatography separations to obtain enantiomeric Compound (1).

Scheme 1 below describes use of Ac49 as a coformer acid for the preparation of Compound (la) and for the chiral resolution of Compound (1).

Scheme 1

Compound (1 )

Example 2 – Preparation of Compound (1) Using Scheme 1

Step la

Intermediate (A) (5 g, 12.5 mmol) was dissolved in 9: 1 v/v MIBK/ethanol (70 mL, 14 vol.) at 50 °C with stirring and dissolution was observed in less than about 5 minutes. [(lS)-en<io]-(+)-3-bromo-10-camphor sulfonic acid monohydrate (4.1 g, 12.5 mmol) was added and dissolution was observed in about 10-20 minutes. Seeding was then performed with Compound (la) (95% e.e., 5 mg, 0.1% w.) and the system was allowed to equilibrate for about 1 hour at 50 °C, was cooled to about 20 °C at 0.15 °C/min, and then equilibrated at 20 °C for 2 hours. The solid phase was isolated by filtration, washed with ethanol, and dried at about 50 °C and 3 mbar for about 2 to 3 hours to yield Compound (la) as a 0.6 molar equiv. EtOH solvate and 0.6 molar equiv. hydrate (93.4% e.e.).

Step lb

Compound (la) was then suspended in MIBK/ethanol 95/5% by volume (38 mL, 10 vol.) at 50 °C with stirring. After about 2 hours at 50 °C, the suspension was cooled to about 5 °C for 10 to 15 hours. The solid phase was recovered by filtration and dried at about 50 °C and 3 mbar for about 3 hours. Compound (la) (97.4% e.e.) was recovered. Step 2

000138] Compound (1) was released by suspending Compound (la) (3.9 g, 5.5 mmoi), without performing the optional reslurrying in Step 1, in 20 mL of water at room temperature and treating with 5M sodium hydroxide in water (1.3 mL, 1.2 mol). The mixture was kept at room temperature for about 15 hours and the solid was isolated by filtration and dried at 50 °C and 3 mbar for about 3 hours. Compound (1) was recovered (94.4% e.e.).

Example 3 – Large Scale Preparation of Compound (1) Using Scheme 1

The procedure of Example 1 was followed using 3.3 kg of Intermediate (A) and the respective solvent ratios to provide 95.7% e.e. in Step la; 99.2% e.e. in Step lb; and 99.2% e.e. in Step 2.

Example 4 – Alternative Preparation of Compound (1) Using Scheme 1

Step la

Intermediate (A) (751 mg, 1.86 mmol)) was dissolved in 9: 1 v/v

MIBK/ethanol (7.5 mL, 10 vol.) at 50 °C with stirring. [(15)-eni o]-(+)-3-bromo-10-camphor sulfonic acid monohydrate (620 mg, 1.88 mmol, 1 equiv.) was added. Formation of a precipitate was observed at about 1 hour at 50 °C. The system was then cooled to about 5 °C at 0.1 °C/min, and then equilibrated at 5 °C for about 60 hours. The solid phase was isolated by filtration and dried at about 50 °C and 3 mbar for about 2 hours to yield

Compound (la)(92% e.e.). See Figures 1-4 for XRPD (Figure 1), chiral HPLC (Figure 2), Ή NMR (Figure 3), and TGA/DSC analyses (Figure 4). The XRPD pattern from the material in Example 3 is similar to that in Example 1 with some slight shifts in the positions of specific diffraction peaks (highlighted by black arrows in Figure l). The ‘H NIVIR was consistent with a mono-salt of Compound (la) containing 0.5 molar equivalent of EtOH and 0.6% by weight residual MIBK. The TGA analysis showed a stepwise mass loss of 3.5% between 25 and 90 °C (potentially representing loss of the 0.5 molar equivalent of EtOH) and a gradual mass loss of 1.2% between 90 and 160 °C (potentially representing the loss of adsorbed water). The DSC analysis had a broad endotherm between 25 and 90 °C

representing desolvation and an endotherm at 135 °C representing melt/degradation.

Step lb

Compound (la) (100.3 mg, 0.141 mmol) was re-suspended in 95:5 v/v MIBK EtOH (1 mL, 10 vol.) at 50 °C and stirred for 1 hour before cooling to 5 °C at

0.1 °C/min. The solid (99.4% e.e.) was recovered by filtration after 1 night at 5 °C. Shifts in the XRPD diffraction peaks were no longer detected (Figure 5; compare Figure 1). Figure 6 shows the chiral HPLC for Compound (la).

Step 2

Compound (la) (100.2 mg, 0.141 mmol) from Step la was suspended in water (2 mL, 20 vol.) at 50 °C and 5 M NaOH in water (34 μL·, 1.2 molar equiv) was added. The resulting suspension was kept at 50 °C for one night, cooled to room temperature

(uncontrolled cooling) and filtered to yield Compound (1) (92% e.e.). The chiral purity was not impacted by this step and no [(15)-enJo]-(+)-3-bromo-10-camphor sulfonic acid was detected by NMR. Figure 7 compares the XRPD of Compound (1) in Step 2 with

Intermediate (A), the starting material of Step 1. Figure 8 shows the NMR of Compound (1) in Step 2 with Intermediate (A), the starting material of Step 1.

Example 5 – Alternative Preparation of Compound (1) Using Scheme 1 Step la

000144] Intermediate (A) (1 equiv.) was added with stirring to a solution of MIBK (12-13 vol), ethanol (1-1.5 vol), and water (0.05-0.10 vol) and the reaction was heated within 15 minutes to an internal temperature of about 48 °C to about 52 °C . [(lS)-endo]-(+)-3-bromo- 10-camphor sulfonic acid (1 equiv) was added and the reaction was stirred for about 5-10 mins at an internal temperature of about 48 °C to about 52 °C until dissolution occurred. Seed crystals of Compound (la) were added and the reaction was allowed to proceed for 1 hour at an internal temperature of about 48 °C to about 52 °C. The reaction was cooled at a rate of 0.15 °C /min to about 19-21 °C. The suspension was stirred for 2 hours at an internal temperature of about 19 °C to 21 °C and then was collected by filtration and washed twice with ethanol. The product was characterized by 1H NMR and 13C NMR (Figures 13a and 13b), IR Spectrum (Figure 14), DSC (Figure 15), and chiral HPLC (Figure 16).

Step 2a

To Compound (la) (1 equiv.) was added acetone (1.1 vol), IPA (0.55 vol), and methanol (0.55 vol) and the reaction was heated to an internal temperature of about 38 °C to 42 °C. Aqueous ammonia (25%) (1.3 equiv) was added and the reaction was stirred for about 10 minutes. The pH of the reaction was confirmed and the next step performed if > 7. Water was added (0.55 vol), the reaction was cooled to an internal temperature of about 35 °C, seed crystals of Compound (1) were added, and the reaction was stirred for about 10 mins. Water was added (3.3 vol) dropwise within about 30 minutes, the suspension was cooled within 30 minutes to an internal temperature of about 0 °C to 5 °C, and the reaction was stirred for 15 minutes. The solid was collected by filtration and washed three times with water.

Step 2b

To the product of Step 2a) was added acetone (4 vol), ΓΡΑ (1 vol), and methanol (1 vol) and the reaction was heated to an internal temperature of about 38 °C to 42 °C resulting in a clear solution. Water (2 vol) and seed crystals of Compound (1) were added and the system was stirred for about 15 minutes at an internal temperature of about 35 °C. Water (342 mL) was added dropwise in about 30 minutes. The suspension was then cooled in 30 min to an internal temperature of about 0 °C to 5 °C and was stirred for an additional 15 minutes. The solid was collected by filtration, washed twice with water, and chiral purity was determined. If > 99% e.e., then the solid was dried at an internal temperature of about 60 °C under reduced pressure to yield Compound (1). The product was characterized by Ή NMR (Figure 19), 13C NMR (Figure 20), IR (Figure 21), DSC (Figure 22), chiral HPLC (Figure 23).

Scheme 2 below describes use of Acl 10 as a coformer acid for the preparation of Compound (lb) and the chiral resolution of Compound (1).

Intermediate (A)

Compound (1 b)

Compound (1 )

Example 6 – Preparation of Compound (1) Using Scheme 2

Step la

Intermediate (A) (102 mg, 0.256 mmol) was dissolved in MIBK (1 mL, 10 vol.) at 65 °C with stirring. (lS)-phenylethanesulfonic acid, prepared using procedures known to one of skill in the art, in MIBK (3.8 M, 80 μί, 1 molar equiv.) was added and a suspension was observed after 30 minutes at 65 °C. The system was kept at 65 °C for another 30 minutes before cooling to 5 °C at 0.1 C/min. After one night at 5 °C, the solid was filtered, dried at 50 °C, 3 mbar pressure for about 2 hours to yield Compound (lb). See Figures 9-12 for XRPD (Figure 9), chiral HPLC (Figure 10), Ή NMR (Figure 11), and TGA/DSC analyses (Figures 12a and 12b). The XRPD diffraction pattern of the solid obtained in Example 5 differed from the XRPD pattern obtained with the solid from in the salt screen of Example 1 and was consistent with the production of different solids in Examples 1 and 5. The Ή NMR was consistent with the mono-salt with a 0.3% by weight residue of dioxane. In Figure 12a, the thermal behavior was consistent with a non-solvated form exhibiting a melt/degradation at 201 °C. Figure 12b compares the melt pattern of Compound (lb) in Example 5 with Compound (lb) in Example 1.

Steps lb and 2 can be carried out using procedures similar to those used in Examples 2-5.

Example 7 – Polymorphism of Compound (la)

Compound (1) (92% e.e., 10 mg, mmol) was placed in 1.5 mL vials and the solvents (1 mL or less) of Table 3 were added at 50 °C until dissolution was achieved. [(1S)-eni o]-(+)-3-bromo-10-camphorsulfonic acid was added as a solid at 50 °C. The samples were kept at 50 °C for about 1 hour prior to being cooled to room temperature overnight

(uncontrolled cooling rate). Clear solutions were successively cooled to 4 °C, -20 °C and evaporated at room temperature. Any gum obtained after evaporation was re-suspended in diethyl ether. The solid phases generated were characterized by XRPD and if relevant, by Ή NMR and TGA/DSC.

Table 3. Compound (la) Polymorphism Conditions

C.S. means clear solution and Susp. means suspension. “A” means the XRPD diffraction pattern was new but similar to that for Ac49 in

Example 1. “B” means the XRPD diffraction pattern was the same as that for Ac49 in Example 1. “M.E.” means molar equiv.

Page 38 of 64

NAI- 1500460480V I

Each of the seven solvents in which solvates were observed (heterosolvates not included) were mixed with MIBK (90% vol). Solutions of Intermediate (A) were prepared in the solvent mixtures (10 vol) at 50 C and [(15)-en<io]-(+)-3-bromo-10-camphor sulfonic acid (1 molar equivalent) was added. The resulting clear solutions were cooled to 5 °C at 0.2 C/min. Surprisingly, no crystallization was reported in any sample. Seeding was performed with a few crystals of each solvate at about 25 °C. The solid phases were analyzed by XRPD and the liquid phases were analyzed by chiral HPLC. See Table 4 for a summary of the results (where “Dias 2” is the (2R, 3R) diastereomer of Compound (la)) .

Table 4. Compound (la) Solvate Analysis

As seen in Table 4 above, the ethanol/MIBK system yielded 93% pure Compound (la) which demonstrates that Compound (la) does crystallize in a very pure form as an ethanolate solvate.

Other objects, features and advantages of the compounds, methods and compositions described herein will become apparent from the following description. It should be understood, however, that the description and the specific examples, while indicating specific embodiments, are given by way of illustration only, since various changes and modifications within the spirit and scope of the present description will become apparent from this detailed description.

All publications including patents, patent applications and published patent applications cited herein are hereby incorporated by reference for all purposes.

PATENT

US 2011196153

http://www.google.co.ve/patents/US20110237581

 

STR1.jpg

Patent

US 2011237581

PATENTSTR1.jpg

PATENT

http://www.google.com/patents/WO2015069851A1?cl=en

SYNTHETIC EXAMPLES

Example 1

\ ,

(1 a) (2) (3) (la) (5)

To a flask was added N-methyl-l,2,4-triazole (la)(249.3 g, 3.0 mol, 1 equiv.),

2-methyl-THF (1020 mL, about 1 :4 m/v), and DMF (2)(230.2 g, 3.15 mol, 1.05 equiv.), in any order. The solution was cooled to an internal temperature of about -5 to 0 °C. To the flask was added LiHMDS (3) as a 20% solution in 2-methyl-THF (3012 g, 3.6 mol, 1.2 equiv.) dropwise within about 60 minutes. During the addition of the LiHMDS (3), the desired Compound (la) was precipitated as the 2-methyl-THF solvate, and the flask was cooled to about -30 °C. The reaction was stirred for about 30 minutes at an internal temperature of about -5 to 0 °C.

The precipitated crystals were removed from the reaction mixture by filtration and washed with 2-methyl-THF. The product, Compound (la) as the 2-methyl-THF solvate, was dried under vacuum at an internal temperature of about 60 °C (about 72.5% as measured by NMR) to yield Compound (la).

Example 2

As shown in Example 2, the Compounds of Formula I are useful in the synthesis of more complex compounds. See General Scheme 1 for a description of how the first step can be accomplished. Compounds of Formula I can be reacted with compound (6) to yield Compounds of Formula II. In Example 2, Compound (la) can be reacted with

Compound (6) to yield Compound (7). The remaining steps are accomplished using procedures known to one of ordinary skill in the art, for example, as disclosed in

WO2010017055 and WO2011097602 to yield Compound (12).

 

PATENT

US 2014323725/http://www.google.com/patents/WO2011097602A1

5-fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5-yl)-8,9- dihydro-2H-pyrido[4,3,2-Je]phthalazin-3(7H)-one, as shown in formula (1), and its enantiomer compounds, as shown in formulas (la) and (lb):

Example 1

(Z)-6-Fluoro-3-(( 1 -methyl- IH- 1 ,2,4-triazol-5 -yl)methylene)-4-nitroisobenzofuran- 1 (3H)-one (3)

[0053] To a 80 L jacketed glass reactor equipped with a chiller, mechanical stirrer, thermocouple, and nitrogen inlet/outlet, at 15 – 25 °C, anhydrous 2-methyl-tetrahydrofuran (22.7 kg), 6-fluoro-4- nitroisobenzofuran-l(3H)-one (2) (2.4 kg, 12.2 mol, 1.00 eq.), and 2-methyl-2H-l,2,4-triazole-3- carbaldehyde (49.6 – 52.6 % concentration in dichloromethane by GC, 3.59 – 3.38 kg, 16.0 mol, 1.31 eq.) were charged consecutively. Triethylamine (1.50 kg, 14.8 mol, 1.21 eq.) was then charged into the above reaction mixture. The reaction mixture was stirred for another 10 minutes. Acetic anhydride (9.09 – 9.10 kg, 89.0 – 89.1 mol, 7.30 eq.) was charged into the above reaction mixture at room temperature for 20 – 30 minutes. The reaction mixture was heated from ambient to reflux temperatures (85 – 95 °C) for 80 – 90 minutes, and the mixture was refluxed for another 70 – 90 minutes. The reaction mixture was monitored by HPLC, indicating compound (2) was reduced to < 5 %. The resulting slurry was cooled down to 5 – 15 °C for 150 – 250 minutes. The slurry was aged at 5 – 15 °C for another 80 – 90 minutes. The slurry was filtered, and the wet cake was washed with ethyl acetate (2L x 3). The wet cake was dried under vacuum at 40 – 50 °C for 8 hours to give 2.65 – 2.76 kg of (Z)-6-fluoro-3-((l -methyl-lH-l ,2,4-triazol-3- yl)methylene)-4-nitroisobenzofuran-l(3H)-one (3) as a yellow solid (2.66 kg, yield: 75.3 %, purity: 98.6 – 98.8 % by HPLC). LC-MS (ESI) m/z: 291 (M+l)+. Ή-ΝΜΡ (400 MHz, DMSO-d6) δ (ppm): 3.94 (s, 3H), 7.15 (s, 1H), 8.10 (s, 1H), 8.40-8.42 (dd, Jx = 6.4 Hz, J2 = 2.4 Hz, 1H), 8.58-8.61 (dd, Jx = 8.8 Hz, J2 = 2.4 Hz, 1H).

Example 2

Methyl 5- enzoate (4)

Example 2A

[0054] (¾-6-Fluoro-3-((l-methyl-lH-l,2,4-taazol-3-yl)m (3) (177 g, 0.6 mol, 1.0 eq.), and HC1 (2 N in methanol, 3 L, 6 mol, 10 eq.) were charged into a 5 L 3-neck flask equipped with mechanical stirrer, thermometer, and nitrogen inlet/outlet. The reaction mixture was stirred at room temperature for 25 hours. The reaction mixture was monitored by HPLC, indicating 0.8 % compound (3) remained. The reaction mixture was concentrated under vacuum at 40 °C to dryness, and methyl 5-fluoro-2-(2-(l -methyl- lH-l,2,4-triazole-3-yl)acetyl)-3-nitrobenzoate hydrochloride (4) was obtained as a yellow solid (201 g, yield: 93.4 %). It was used for the next step without further purification. LC-MS (ESI) m/z: 323 (M+l)+ ¾-NMR (400 MHz, DMSO-J6) δ (ppm): 3.89 (s, 3H), 3.92 (s, 3H), 4.60 (s, 2H), 7.85 (s, 1H), 8.25-8.28 (dd, Jx = 8.4 Hz, J2 = 2.8 Hz, 2H), 8.52-8.54 (dd, Jx = 8.4 Hz, J2 = 2.8 Hz, 2H).

Example 2B

An alternative workup procedure to that illustrated in Example 2A follows. Instead of evaporating the reaction mixture to dryness, it was condensed to 2 volumes, followed by solvent exchange with 12 volumes of THF, and then 12 volumes of heptane. The slurry mixture was concentrated to 2 volumes and filtered to give the product. As such, 1.8 kilograms of (Z)-6-fluoro-3-((l-methyl-lH-l,2,4-triazol-3- yl)methylene)-4-nitroisobenzofuran-l(3H)-one (3) gave 2.15 kilograms (yield 96.4 %) of the product methyl 5-fluoro-2-(2-(l -methyl- lH-l,2,4-triazole-3-yl)acetyl)-3-nitrobenzoate hydrochloride (4).

Example 3

Methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-l,2,4-triazol-5-yl)-4-oxo-l,2,3,4- tetrahydroquinoline-5 -carboxylate (5)

Example 3A

To a suspension of methyl 5-fluoro-2-(2-(l-methyl-lH-l,2,4-triazol-5-yl)acetyl)-3-nitrobenzoate (4) (5 g, 15.5 mmol, leq.) and 4-fluorobenzaldehyde (3.6 g, 29 mmol, 1.87 eq.) in a mixture of solvents tetrahydrofuran (30 mL) and MeOH (5 mL) was added titanium(III) chloride (20 % w/w solution in 2N Hydrochloric acid) (80 mL, 6 eq.) dropwise with stirring at room temperature. The reaction mixture was allowed to stir at 30~50°C for 2 hours. The mixture was then diluted with water (160 mL), and the resulting solution was extracted with ethyl acetate (100 mL x 4). The combined organic layers were washed with saturated NaHC03 (50 mL x 3) and aqueous NaHS03 (100 mL x 3), dried by Na2S04, and concentrated to dryness. This afforded a crude solid, which was washed with petroleum ether (120 mL) to obtain the title compound as a yellow solid (5.9 g, yield: 95 %, purity: 97 %). LC-MS (ESI) m/z: 399 (M+l)+. ^-NMR (400 MHz, CDCla) δ (ppm): 3.58 (s, 3H), 3.87 (s, 3H), 4.16-4.19 (d, J2=13.2 Hz, 1H), 4.88 (s, 1H), 5.37-5.40 (d, J2=13.2 Hz, 1H), 6.47-6.53 (m, 2H) , 6.97-7.01 (m, 2H), 7.37-7.41 (m, 2H), 7.80 (s, 1H).

Example 3B

An alternative workup procedure to that illustrated in Example 3A follows. After the completion of the reaction, the mixture was extracted with isopropyl acetate (20 volumes x 4) without water dilution. The product was isolated by solvent exchange of isopropyl acetate with heptanes followed by re-slurry with MTBE and filtration. As such, 3 kilograms of methyl 5-fluoro-2-(2-(l-methyl-lH-l,2,4-triazol-5- yl)acetyl)-3-nitrobenzoate (4) afforded 2.822 kilograms of the title compound (5) (yield 81 %).

Example 3C

To a stirred solution of methyl 5-fluoro-2-(2-(l-methyl-lH-l,2,4-triazol-5-yl)acetyl)-3- nitrobenzoate (4) (580 mg, 2 mmol) and 4-fluorobenzaldehyde (488 mg, 4 mmol) in methanol (0.75 mL) and tetrahydrofuran (4.5 mL) was added concentrated HC1 solution (w/w 37 %, 6 mL), then reductive powdered Fe (672 mg, 12 mmol) was added slowly to the reaction system. After the addition was complete, the resulting mixture was heated to 60 °C and kept at this temperature for 3 hours. After the disappearance of the starting material (4) as monitored by LC-MS, the reaction mixture was partitioned between ethyl acetate (30 mL) and water (30 mL) and the aqueous phase was extracted with ethyl acetate (20 mL x 3). The combined organic phase was dried with Na2S04, concentrated in vacuo and purified by column chromatography (ethyl acetate: petroleum ether = 1 : 1) to give the title compound (5) as a pale yellow solid (300 mg, yield 40 %). LC-MS (ESI) m/z: 399 (M+l)+. LH-NMR (400 MHz, CDC13) δ (ppm): 3.58 (s, 3H), 3.87 (s, 3H), 4.17 (d, 1H), 4.87 (s, 1H), 5.38 (d, 1H), 6.50 (dd, 2H), 6.99 (dd, 2H), 7.38 (dd, 2H), 7.80 (s, 1H).

Example 3D

To a stirred solution of methyl 5-fluoro-2-(2-(l-methyl-lH-l,2,4-triazol-5-yl)acetyl)-3- nitrobenzoate (4) (580 mg, 2 mmol) and 4-fluorobenzaldehyde (488 mg, 4 mmol) in methanol (0.75 mL) and tetrahydrofuran (4.5 mL) was added SnCl2 (2.28 g, 12 mmol) and concentrated HC1 (w/w 37 %, 6 mL), the resulting mixture was reacted at 45 °C for 3 hours, until LC-MS indicating the disappearance of the starting material (4) and about 50 % formation of the product. The mixture was then partitioned between ethyl acetate (30 mL) and water (30 mL) and the aqueous phase was extracted with ethyl acetate (20 mL x 3). The combined organic phase was dried with Na2S04, concentrated in vacuo and purified by column chromatography (ethyl acetate: petroleum ether = 1 : 1) to give the title compound (5) as a pale yellow solid (10 mg, yield 1.3 %). LC-MS (ESI) m/z: 399 (M+l)+. LH-NMR (400 MHz, CDC13) δ (ppm): 3.58 (s, 3H), 3.87 (s, 3H), 4.17 (d, 1H), 4.87 (s, 1H), 5.38 (d, 1H), 6.50 (dd, 2H), 6.99 (dd, 2H), 7.38 (dd, 2H), 7.80 (s, 1H).

Example 3E

A solution of methyl 5-fluoro-2-(2-(l-methyl-lH-l,2,4-triazol-5-yl)acetyl)-3-nitrobenzoate (4) (580 mg, 2 mmol) and 4-fluorobenzaldehyde (488 mg, 4 mmol) in methanol (20 mL) and acetic acid (1 mL) was stirred at room temperature for 24 hours under hydrogen (1 barr) in the presence of a catalytic amount of 10 % Pd/C (212 mg, 0.2 mmol). After the reaction was complete, the catalyst was removed by filtration through a pad of Celite, the solvent was removed in vacuo, and the residue was purified by column chromatography (ethyl acetate: petroleum ether = 1 : 1) to give the title compound (5) as a pale yellow solid (63 mg, yield 8 %). LC-MS (ESI) m/z: 399 (M+l)+ . 1HNMR (400 MHz, DMSO-d6) δ (ppm): 3.56 (s, 3H), 3.86 (s, 3H), 7.02 (dd, 2H), 7.21 (dd, 2H), 7.90 (s, 1H), 8.08 (s, 1H), 8.26 (dd, 1H), 8.56 (dd, 1H).

Example 4

5-Fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-

 Methyl 7-fluoro-2-(4-fluorophenyl)-3-(l -methyl-lH-l ,2,4-triazol-5-yl)-4-oxo-l,2,3,4- tetrahydroquinoline-5-carboxylate (5) (150 g, 0.38 mol, 1.0 eq.) and methanol (1.7 L) were charged into a 3 L 3-neck flask equipped with a mechanical stirrer, thermometer, and nitrogen inlet/outlet. The resulted suspension was stirred at room temperature for 15 minutes. Hydrazine hydrate (85 % of purity, 78.1 g, 1.33 mol, 3.5 eq.) was charged dropwise into the above reaction mixture within 30 minutes at ambient temperature. The reaction mixture was stirred at room temperature overnight. The reaction was monitored by HPLC, showing about 2 % of compound (5) left. The obtained slurry was filtered. The wet cake was suspended in methanol (2 L) and stirred at room temperature for 3 hours. The above slurry was filtered, and the wet cake was washed with methanol (0.5 L). The wet cake was then dried in vacuum at 45 – 55 °C for 12 hours. This afforded the title compound as a pale yellow solid (112 g, yield: 78.1 %, purity: 95.98 % by HPLC). LC-MS (ESI) m/z: 381 (M+l)+. ^-NMR (400 MHz, DMSO-J6) δ (ppm): 3.66 (s, 3H), 4.97-5.04 (m, 2H), 6.91-6.94 (dd, Jx = 2.4, J2 = 11.2 Hz, 1H), 7.06-7.09 (dd, Jx = 2.4, J2 = 8.8 Hz, 1H), 7.14-7.18 (m, 3H), 7.47-7.51 (m, 2H), 7.72 (s, 1H), 7.80 (s, 1H), 12.35 (s, 1H).

Example 5

5 -Amino-7-flu in- 1 (2H)-one

To a solution of 6-fluoro-3-((l-methyl-lH-l,2,4-triazol-3-yl)methylene)-4-nitroiso-benzofuran- l(3H)-one (3) (4.0 g, 135 mmol) in THF (100 mL) was added hydrazine monohydrate (85 %) (6 mL) at room temperature under nitrogen atmosphere. The mixture was stirred for 2 hours, then acetic acid (6 mL) was added and the mixture was heated to and kept at 60 °C for 18 hours. The resulting mixture was diluted with water (100 mL) and extracted with ethyl acetate (100 mL x 3). The organic layer was dried over anhydrous Na2S04 and evaporated to dryness to afford the title compound as a yellow solid (1.6 g, yield 42 %). LC-MS (ESI) m/z: 275(M+1)+.

Example 6

(£’)-7-fluoro-5-(4-fluorobenzylideneamino)-4-((l -methyl- IH- 1 ,2,4-triazol-5-yl)methyl)phthalazin- 1 (2H)- one

(7)

To a suspended of 5-amino-7-fluoro-4-((l-methyl-lH-l,2,4-triazol-3-yl)methyl) phthalazin- l(2H)-one (7) (1.6 g, 5.8 mmol) in acetonitrile (50 mL) was added 4-fluorobenzaldehyde (2.2 g, 17.5 mmol). The mixture was stirred under reflux under nitrogen for 48 hours. The precipitate was filtered and washed with a mixture of solvents (ethyl acetate/hexane, 1 :1, 10 mL). After drying in vacuum, it afforded the title compound as a yellow solid (1.2 g, yield 52 %). LC-MS (ESI) m/z: 381(M+1)+.

Example 7

5-Fluoro-8 4-fluorophenyl)-9 l-methyl H-l,2,4-triazol-5-yl)-8,9-dihydro-2H^yrido[4,3,2-

(8) (1 )

To a suspension of (£’)-7-fluoro-5-(4-fluorobenzylideneamino)-4-((l-methyl-lH-l,2,4-triazol-5- yl)methyl)phthalazin-l(2H)-one (8) (2.0 g, 5.3 mmol) in THF (80 mL) was added cesium carbonate (3.4 g, 10.6 mmol). The reaction mixture was stirred at 55 °C for 4 hours and cooled down to room temperature. The mixture was diluted with water (50 ml) and extracted with ethyl acetate (50 mL x 3). The combined organic layers were dried over anhydrous Na2S04 and evaporated to dryness to afford the title compound as a white solid (1.6 g, yield 80 %). LC-MS (ESI) m/z: 381(M+1)+. ^-NMR (400 MHz, DMSO- ) δ (ppm): 3.66 (s, 3H), 4.97-5.04 (m, 2H), 6.91-6.94 (dd, Jx = 2.4, J2 = 11.2 Hz, 1H), 7.06-7.09 (dd, Ji = 2.4, J2 = 8.8 Hz, 1H), 7.14-7.18 (m, 3H), 7.47-7.51 (m, 2H), 7.72 (s, 1H), 7.80 (s, 1H), 12.35 (s, 1H).

Example 8

(£)-Methyl 5-fluoro-2-(3-(4-fluorophenyl)-2-(l-methyl-lH-l,2,4-triazol-5-yl)acryloyl)-3-nitrobenzoate

(9)

To a stirred solution of methyl 5-fluoro-2-(2-(l-methyl-lH-l,2,4-triazol-5-yl)acetyl)-3- nitrobenzoate (4) (580mg, 2 mmol) and 4-fluorobenzaldehyde (488 mg, 4 mmol) in dimethylsulfoxide (2 mL) was added L-proline (230 mg, 2 mmol). The resulting mixture was kept with stirring at 45 °C for 48 hours. The reaction system was then partitioned between ethyl acetate (50 mL) and water (30 mL), and the organic phase was washed with water (20 mL x 3), dried with Na2S04, concentrated in vacuo, and purified by column chromatography (ethyl acetate: petroleum ether = 1 :3) to give the title compound (9) as a pale yellow foam (340 mg, yield 40 %). LC-MS (ESI) m/z: 429 (M+l)+. ^-NMR (400 MHz, DMSO-dg); δ (ppm): 3.56 (s, 3H), 3.86 (s, 3H), 7.02 (dd, 2H), 7.21 (dd, 2H), 7.90 (s, IH), 8.08 (s, IH), 8.26 (dd, IH), 8.56 (dd, IH).

Example 9

Methyl 7-fluoro-2-(4-fluorophenyl)- 1 -hydroxy-3-( 1 -methyl- IH- 1 ,2,4-triazol-5-yl)-4-oxo- 1 ,2,3,4- tetrahydroquinoline-5 -carboxylate (10)

To a solution of (£)-Methyl 5-fluoro-2-(3-(4-fluorophenyl)-2-(l-methyl-lH-l,2,4-triazol-5- yl)acryloyl)-3-nitrobenzoate (9) (200 mg, 0.467 mmol) in methanol (20 mL) was added 10 % Pd/C (24 mg). After the addition, the mixture was stirred under H2 (1 atm) at room temperature for 0.5 h. The reaction system was then filtered and evaporated under reduced pressure. The residue was purified by chromatography (ethyl acetate: petroleum ether = 1 :1) to give the title compound (10) (110 mg, yield 57 %) as an off-white foam. LC-MS (ESI) m/z: 415 (M+H)+. ¾-NMR (400 MHz, DMSO-d6) δ (ppm): 3.53 (s, 3H), 3.73 (s, 3H), 5.08 (d, 2H), 5.27 (d, 2H), 6.95 (dd, IH), 7.08 (dd, 2H), 7.15 (dd, IH), 7.42 (dd, 2H), 7.77 (s, IH), 9.92 (s, IH). Example 10

Methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-l,2,4-triazol-5-yl)-4-oxo-l,2,3,4-

(10) (5)

To a stirred solution of methyl 7-fluoro-2-(4-fluorophenyl)-l-hydroxy-3-(l-methyl-lH-l,2,4- triazol-5-yl)-4-oxo-l, 2,3, 4-tetrahydroquinoline-5 -carboxylate (10) (41.4 mg, 0.1 mmol) in methanol (5 mL) was added concentrated HCl solution (w/w 37 %, 1 mL) and reductive powdered Fe (56 mg, 1 mmol). The reaction mixture was refluxed for 3 hours. After the disappearance of compound (10) as monitored by LC-MS, the reaction system was partitioned between ethyl acetate (20 mL) and water (20 mL) and then the aqueous phase was extracted with ethyl acetate (10 mL x 3). The combined organic phase was dried with Na2S04, concentrated in vacuo and purified by column chromatography (ethyl acetate: petroleum ether = 1 :1) to give the title compound (5) as a pale yellow solid (12 mg, yield 30 %). LC-MS (ESI) m/z: 399 (M+l)+. ¾-NMR (400 MHz, CDC13) δ (ppm): 3.58 (s, 3H), 3.87 (s, 3H), 4.17 (d, 1H), 4.87 (s, 1H), 5.38 (d, 1H), 6.50 (dd, 2H), 6.99 (dd, 2H), 7.38 (dd, 2H), 7.80 (s, 1H).

Example 11

Methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-l,2,4-triazol-5-yl)-4-oxo-l,2,3,4-

To a solution of (£)-Methyl 5-fluoro-2-(3-(4-fluorophenyl)-2-(l-methyl-lH-l,2,4-triazol-5- yl)acryloyl)-3-nitrobenzoate (9) (214 mg, 0.5 mmol) in methanol (5 mL) was added concentrated HCl solution (w/w 37 %, 1 mL), then reductive Fe powder (140 mg, 2.5 mmol) was added slowly to the reaction system. After the addition was complete the resulting mixture was refluxed for 24 hours. The reaction mixture was then filtered, concentrated, neutralized with saturated NaHC03 (20 mL), and extracted with ethyl acetate (10 mL x 3). The residue was purified by chromatography (ethyl acetate: petroleum ether = 1 : 1) to give the title compound (5) (30 mg, yield 15 %) as an off-white foam. LC-MS (ESI) m/z: 399 (M+H)+. ^-NMR (400 MHz, DMSO-d6) δ (ppm): 3.56 (s, 3H), 3.86 (s, 3H), 7.02 (dd, 2H), 7.21 (dd, 2H), 7.90 (s, 1H), 8.08 (s, 1H), 8.26 (dd, 1H), 8.56 (dd, 1H).

Example 12

(8R,9S)-5-fluoro-8-(4-fluorophenyl)-9-(l-me

Je]phthalazin-3(7H)-one (la) and (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5-

(1) (la) (lb)

A chiral resolution of 5-fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5-yl)-8,9- dihydro-2H-pyrido[4,3,2-Je]phthalazin-3(7H)-one (1) (52.5 g) was carried out on a super-fluid chromatography (SFC) unit using a CHIRALPAK IA column and C02/methanol/diethylamine

(80/30/0.1) as a mobile phase. This afforded two enantiomers with retention times of 7.9 minute (23.6 g, recovery 90 %, > 98 % ee) and 9.5 minute (20.4 g, recovery 78 %, > 98 % ee) as analyzed with a CHIRALPAK IA 0.46 cm x 15 cm column and C02/methanol/diethylamine (80/30/0.1) as a mobile phase at a flow rate of 2 g/minute.

Example 13

(2R,3R)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-l,2,4-triazol-5-yl)-4-oxo-l,2,3,4- tetrahydroquinoline-5-carboxylate (6a) and (2S,3S)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-

(5) (6a) (6b)

Example 13A

The chiral resolution of compound (5) was carried out on a SFC unit with a CHIRALPAK®IC 3 cm (I.D.) x 25 cm, 5 μηι column, using C02/MeOH (80/20) as a mobile phase at a flow rate of 65 g/ minute while maintaining the column temperature at 35 °C and with a detection UV wavelength of 254 nm. As such, a racemate of compound (5) (5 g) in methanol solution was resolved, which resulted in two enantiomers with a retention times of 2.35 minute (2.2 g, 88 % recovery, >98 % ee) and 4.25 minute (2.3 g, 92 % recovery, >98 % ee), respectively when analyzed using CHIRALPAK®IC 0.46 cm x 15 cm column and CO2/MeOH(80/20) as a mobile phase at a flow rate of 2 mL/ minute.

Example 13B

The chiral resolution of compound (5) was carried out on a SFC unit with a CHIRALPAK®IC 5cm (I.D.) x 25 cm, 5 μηι column, using C02/MeOH (75/25) as a mobile phase at a flow rate of 200 mL/ minute while maintaining the column temperature at 40 °C and with a detection UV wavelength of 255 nm. As such, a racemate of compound (5) (1.25 kg) in methanol solution was resolved, which resulted in two enantiomers in about 83 % yield and 97.4 % purity.

Example 13C

Alternatively, the separation can also be achieved on a Simulated Moving Bed (SMB) unit with a CHIRALPAK®IC column and acetonitrile as a mobile phase. The retention times for the two enantiomers are 3.3 and 4.1 minutes, respectively. In certain embodiments, the productivity can be greater than 6 kg Feed/day/kg CSP.

Example 14

(8R,9S)-5-fluoro-8 4-fluorophenyl)-9<l-me

Je]phthalazin-3(7H)-one (la) and (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5- (lb)

Example 14A

To a solution of (2R,3R)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-l,2,4-triazol-5-yl)- 4-oxo-l,2,3,4-tetrahydroquinoline-5-carboxylate (6a) or (2S,3S)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l- methyl-lH-l,2,4-triazol-5-yl)-4-oxo-l,2,3,4-tetrahydroquinoline-5-carboxylate (6b) (400 mg, 1.0 mmol) in ethanol (8.0 mL) was added hydrazine monohydrate (85 %, 2.0 mL), and the solution stirred at room temperature for 2 hours. The resulting solution was then concentrated to a volume of 2 mL and filtered, and the resultant cake washed with ethanol (1 mL). After drying in vacuum at 50°C, this afforded the title compound as a white solid (209 mg, yield 55 %). LC-MS (ESI) m/z: 381(M+1)+. ^-NMR (400 MHz, DMSO-dg): δ (ppm): 3.681 (s, 3H), 4.99-5.06 (m, 2H), 6.92-6.96 (m, 1H), 7.08-7.11 (m, 1H), 7.16-7.21 (t, J= 8.8 Hz, 2H), 7.49-7.53 (m, 2H), 7.75 (s, 1H), 7.83 (s, 1H), 12.35 (s, 1H).

Example 14B

To a solution of (2R,3R)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-l,2,4-triazol-5-yl)- 4-oxo-l,2,3,4-tetrahydroquinoline-5-carboxylate (6a) or (2S,3S)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l- methyl-lH-l,2,4-triazol-5-yl)-4-oxo-l,2,3,4-tetrahydroquinoline-5-carboxylate (6b) (446 g) in acetonitrile (10 volume) was added hydrazine monohydrate (2.9 eq.), and the solution stirred at room temperature for 2 hours. The resulting solution was then concentrated to a volume of 2 mL and filtered. The crude product was re-slurried with water (3~5 volumes) at 15-16 °C. After drying in vacuum at 50 °C, this affords the title compound as a white solid (329 g, yield 77%, 99.93% purity). LC-MS (ESI) m/z:

381(M+1)+; ¾-NMR (400 MHz, DMSO-d6) δ (ppm): 3.681 (s, 3H), 4.99-5.06 (m, 2H), 6.92-6.96 (m, 1H), 7.08-7.11 (m, 1H), 7.16-7.21 (t, J= 8.8 Hz, 2H), 7.49-7.53 (m, 2H), 7.75 (s, 1H), 7.83 (s, 1H), 12.35 (s, 1H).

References

External links

nmr……http://www.medkoo.com/uploads/product/Talazoparib__BMN-673_/qc/BMN673-QC-BBC20130523-Web.pdf

Patent                       Submitted                        Granted

PROCESSES OF SYNTHESIZING DIHYDROPYRIDOPHTHALAZINONE DERIVATIVES [US2014323725]2014-06-022014-10-30

CRYSTALLINE (8S,9R)-5-FLUORO-8-(4-FLUOROPHENYL)-9-(1-METHYL-1H-1,2,4-TRIAZOL-5-YL)-8,9-DIHYDRO-2H-PYRIDO[4,3,2-DE]PHTHALAZIN-3(7H)-ONE TOSYLATE SALT [US2014228369]2014-04-142014-08-14

Crystalline (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one tosylate salt [US8735392]2011-10-202014-05-27

DIHYDROPYRIDOPHTHALAZINONE INHIBITORS OF POLY(ADP-RIBOSE)POLYMERASE (PARP) [US8012976]2010-02-112011-09-06

DIHYDROPYRIDOPHTHALAZINONE INHIBITORS OF POLY(ADP-RIBOSE)POLYMERASE (PARP) FOR USE IN TREATMENT OF DISEASES ASSOCIATED WITH A PTEN DEFICIENCY [US2014066429]2013-08-212014-03-06

METHODS AND COMPOSITIONS FOR TREATMENT OF CANCER AND AUTOIMMUNE DISEASE [US2013184342]2013-03-132013-07-18

WO2012054698A1 Oct 20, 2011 Apr 26, 2012 Biomarin Pharmaceutical Inc. Crystalline (8s,9r)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1h-1,2,4-triazol-5-yl)-8,9-dihydro-2h-pyrido[4,3,2-de]phthalazin-3(7h)-one tosylate salt
WO2015069851A1 Nov 6, 2014 May 14, 2015 Biomarin Pharmaceutical Inc. Triazole intermediates useful in the synthesis of protected n-alkyltriazolecarbaldehydes
US8420650 Mar 31, 2011 Apr 16, 2013 Biomarin Pharmaceutical Inc. Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP)
US8541403 Feb 3, 2011 Sep 24, 2013 Biomarin Pharmaceutical Inc. Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP) for use in treatment of diseases associated with a PTEN deficiency
US8735392 Oct 20, 2011 May 27, 2014 Biomarin Pharmaceutical Inc. Crystalline (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one tosylate salt
US8765945 Feb 8, 2011 Jul 1, 2014 Biomarin Pharmaceutical Inc. Processes of synthesizing dihydropyridophthalazinone derivatives
US8999987 Mar 6, 2013 Apr 7, 2015 Biomarin Pharmaceutical Inc. Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP)
US9018201 Aug 21, 2013 Apr 28, 2015 Biomarin Pharmaceuticial Inc. Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP) for use in treatment of diseases associated with a PTEN deficiency

 

Talazoparib
Talazoparib.svg
Systematic (IUPAC) name
(8S,9R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one
Clinical data
Legal status
  • Investigational
Chemical data
Formula C19H14F2N6O
Molar mass 380.35 g/mol

/////////////BMN 673, talazoparib, phase 3, BMN673, BMN673, BMN-673, LT673, LT 673, LT-673, Poly ADP ribose polymerase 2 inhibitor, Poly ADP ribose polymerase 1 inhibitor, cancer, MDV-3800 , MDV 3800

Cn1c(ncn1)[C@H]2c3c4c(cc(cc4N[C@@H]2c5ccc(cc5)F)F)c(=O)[nH]n3

O=C1NN=C2C3=C1C=C(F)C=C3N[C@H](C4=CC=C(F)C=C4)[C@H]2C5=NC=NN5C


Filed under: cancer, Phase3 drugs, Uncategorized Tagged: BMN 673, BMN673, CANCER, LT 673, LT673, MDV-3800, PHASE 3, Poly ADP ribose polymerase 1 inhibitor, Poly ADP ribose polymerase 2 inhibitor, talazoparib, taloazparib
Viewing all 2871 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>